• Title/Summary/Keyword: 수학적 추론

Search Result 365, Processing Time 0.017 seconds

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.

Analysis of Highschool Students' Error types and Correction in Learning Function (고등학생들의 함수단원 학습과정에서 나타나는 오류유형 분석과 교정)

  • Yang, Ki-Yeol;Jang, You-Sun
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.1
    • /
    • pp.23-43
    • /
    • 2010
  • This study is to investigate how much highschool students, who have learned functional concepts included in the Middle school math curriculum, understand chapters of the function, to analyze the types of errors which they made in solving the mathematical problems and to look for the proper instructional program to prevent or minimize those ones. On the basis of the result of the above examination, it suggests a classification model for teaching-learning methods and teaching material development The result of this study is as follows. First, Students didn't fully understand the fundamental concept of function and they had tendency to approach the mathematical problems relying on their memory. Second, students got accustomed to conventional math problems too much, so they couldn't distinguish new types of mathematical problems from them sometimes and did faulty reasoning in the problem solving process. Finally, it was very common for students to make errors on calculation and to make technical errors in recognizing mathematical symbols in the problem solving process. When students fully understood the mathematical concepts including a definition of function and learned procedural knowledge of them by themselves, they did not repeat the same errors. Also, explaining the functional concept with a graph related to the function did facilitate their understanding,

  • PDF

Review on Artificial Intelligence Education for K-12 Students and Teachers (K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰)

  • Kim, Soohwan;Kim, Seonghun;Lee, Minjeong;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The purpose of this study is to propose the direction of AI education in K-12 education through investigating and analyzing aspects of the purpose, content, and methods of AI education as the curriculum and teacher training factors. We collected and analyzed 9 papers as the primary literature and 11 domestic and foreign policy reports as the secondary literature. The collected literatures were analyzed by applying a descriptive reviews, and the implications were derived by analyzing the curriculum components and TPACK elements for multi-dimensional analysis. As a result of this study, AI education targets were divided into three steps: AI users, utilizer, and developers. In K-12 education, the user and utilizer stages are appropriate, and artificial intelligence literacy must be included for user education. Based on the current computing thinking ability and coding ability for utilizer education, the implication was derived that it is necessary to target the ability to create creative output by applying the functions of artificial intelligence. In addition to the pedagogical knowledge and the ability to use the platform, The teacher training is necessary because teachers need content knowledge such as problem-solving, reasoning, learning, perception, and some applied mathematics, cognitive / psychological / ethical of AI.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.