In school mathematics, the definition and concept of a differentiation has been dealt with as a formula. Because of this reason, the learners' fundamental knowledge of the concept is insufficient, and furthermore the learners are familiar with solving routine, typical problems than doing non-routine, unfamiliar problems. Preceding studies have been more focused on dealing with the issues of learner's fallacy, textbook construction, teaching methodology rather than conducting the more concrete and efficient research through experiment-based lessons. Considering that most studies have been conducted in such a way so far, this study was to create a lesson plan including teaching resources to guide the understanding of differential coefficients and derivatives. Particularly, on the basis of the theory of Historical Genetic Process Principle, this study was to accomplish the its goal while utilizing a technological device such as GeoGebra. The experiment-based lessons were done and analyzed with 68 first graders in S high school located in G city, using Posttest Only Control Group Design. The methods of the examination consisted of 'learning comprehension' and 'learning satisfaction' using 'SPSS 21.0 Ver' to analyze students' post examination. Ultimately, this study was to suggest teaching methods to increase the understanding of the definition of differentials.
Jo, Se-Hee;Jung, Dae-Hyung;Oh, Sung-Kwun;Kim, Hyun-Ki
Proceedings of the KIEE Conference
/
2011.07a
/
pp.1950-1951
/
2011
본 논문에서는 요구되는 성능을 만족시키는 최적 Fuzzy PI 제어의 정압제어로의 효율적인 적용 및 성능 향상을 위하여 유전자 알고리즘(GA: Genetic Algorithm)을 이용한 제어 설계 방법을 제시 한다. PID제어기는 이해가 쉽고 구조가 간단하여, 실제 구현이 용이하여 공정 산업분야에서 가장 널리 사용되고 있는 제어기 이다. 따라서 단일 입 출력 선형 시스템 에서는 우수한 성능을 보이나 동적 시스템, 고차 시스템 및 수학적 모델 선정이 어려운 시스템에서는 비효율 적이다. 반면, Fuzzy 제어기는 인간의 지식과 경험을 이용한 지적 제어방식으로 IF-THEN형식의 규칙으로부터 제어 입력을 결정하는 병렬형 제어기이다. 이는 과도상태에서 큰 오버슈트 없이 설정치에 도달하게 하는 속응성과 강인성이 좋은 제어기법으로 비선형성이 강하고 불확실하며 복잡한 시스템을 쉽게 제어 할 수 있다는 장점을 지닌다.
The purpose of this study is to survey mathematics teacher's cognition of proof along with their proof forms of expression and proof ability, and to explore the relationship between their proof scheme and teaching practice. This study shows that mathematics teachers tend to regard proof as a deduction from assumption to conclusion and that they prefer formal proof with mathematical symbols. Mathematics teachers also recognize that prof is an important area in school mathematics but they reveal poor understanding of teaching methods of proof. Teachers tend to depend on the proof style employed in mathematics textbooks. This study demonstrates that a proof scheme is a major factor of determining the teaching method of proof.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.241-262
/
2010
This study was carried out to identify the cognitive obstacles while using addition and subtraction with fractions, and to analyze the sources of cognitive obstacles. For this purpose, the following research questions were established : 1. What errors do elementary students make while performing the operations with fractions, and what cognitive obstacles do they have? 2. What sources cause the cognitive obstacles to occur? The results obtained in this study were as follows : First, the student's cognitive obstacles were classified as those operating with same denominators, different denominators, and both. Some common cognitive obstacles that occurred when operating with same denominators and with different denominators were: the students would use division instead of addition and subtraction to solve their problems, when adding fractions, the students would make a natural number as their answer, the students incorporated different solving methods when working with improper fractions, as well as, making errors when reducing fractions. Cognitive obstacles in operating with same denominators were: adding the natural number to the numerator, subtracting the small number from the big number without carrying over, and making errors when doing so. Cognitive obstacles while operating with different denominators were their understanding of how to work with the denominators and numerators, and they made errors when reducing fractions to common denominators. Second, the factors that affected these cognitive obstacles were classified as epistemological factors, psychological factors, and didactical factors. The epistemological factors that affected the cognitive obstacles when using addition and subtraction with fractions were focused on hasty generalizations, intuition, linguistic representation, portions. The psychological factors that affected the cognitive obstacles were focused on instrumental understanding, notion image, obsession with operation of natural numbers, and constraint satisfaction.
The purpose of this study is find the relation between students' concept and types of proof construction. For this, four undergraduate students majored in mathematics education were evaluated to examine how they understand mathematical concepts and apply their concepts to their proving. Investigating students' proof with their concepts would be important to find implications for how students have to understand formal concepts to success in proving. The participants' proof productions were classified into syntactic proof productions and semantic proof productions. By comparing syntactic provers and semantic provers, we could reveal that the approaches to find idea for proof were different for two groups. The syntactic provers utilized procedural knowledges which had been accumulated from their proving experiences. On the other hand, the semantic provers made use of their concept images to understand why the given statements were true and to get a key idea for proof during this process. The distinctions of approaches to proving between two groups were related to students' concepts. Both two types of provers had accurate formal concepts. But the syntactic provers also knew how they applied formal concepts in proving. On the other hand, the semantic provers had concept images which contained the details and meaning of formal concept well. So they were able to use their concept images to get an idea of proving and to express their idea in formal mathematical language. This study leads us to two suggestions for helping students prove. First, undergraduate students should develop their concept images which contain meanings and details of formal concepts in order to produce a meaningful proof. Second, formal concepts with procedural knowledge could be essential to develop informal reasoning into mathematical proof.
This study was initiated by the idea to help students to be more ideally educated following the 7th curriculum that seeks the proactive students along with creativity for the 21st century. Mind-map was the main tool throughout the study and this was performed to find answers for the following questions : 1) to examine how students' drawing a mind-map affects their mathematical tendency or emotional aspects (motivation for study, interest, etc); 2) to investigate the types and characteristics of mind-maps that students draw; 3) to analyze advantages and obstacles that they experience during the process of drawing a mind-map and provide some suggestions for overcoming them. The research shows that students were highly motivated by the drawing a mind-map. There are types of mind-maps: tree shape and radial shape, and each shape has its own advantages. But the more important factor for being a good mind-map is where and how each concept is located and connected. Although it is true that drawing a mind-map helped students to see the bigger structure of what they learned, but there are several hardships taken care of. The study suggests to extend the experiment to various levels of students and diverse contents.
The purpose of this study is to analyze the tasks developed through task development activities with emphasis on mathematical connectivity, and to provide implications for teacher education to enhance teacher's competence. For this purpose, I analyzed the task developed by 52 pre-teachers through the activities. As a result, they combined mathematics with 'other subjects', 'mathematics', 'phenomenon', 'technology' and 'real life'. And they also made various internal connections of 'Different representation', 'Part-whole relationship', 'Implication', 'Procedure', and 'Instruction-oriented connection'. From the point of view of teacher knowledge, the study revealed that CCK and SCK were positive in terms of 'logical' and 'expression', and KCT as 'strategic' was meaningful but disappointing in diversity; however in terms of 'level', the KCS was limited due to tasks that did not meet the level of students. As such, this analysis reveals that teachers continue to struggle with understanding students' level, but exhibit little difficulty with 'logic', 'expression' and 'strategy. This being the case, teacher education needs to place additional emphasis in understanding students' levels and planning corresponding activities.
The purpose of this study is to analyze Korean students' mathematics achievement characteristics and draw implications for better math education in schools through comparing the results of three east Asian top level countries, Korea, Singapore, and Japan in PISA 2012 results. As a results, the rate of correct answers of Korea students was relatively low compared with those of Singapore, but relatively higher than Japan. From the results of effect size, similar results from t-test was discovered. As shown in analysis according to sub-elements in math assessment framework, the Korean students had low effect size in every sub-elements than Singapore. and they had high effect size at most of sub-elements than Japan, except "personal" context. In top performing level(above level 5), the Korean students had high effect size at "quantities" in mathematical contents, and "employ" in mathematical processes compared with Singapore. And they had row effect size at 6 sub-elements compared with Japan.
This study investigated the prospective teacher's noticing of students' mathematical thinking from the perspective of how the prospective teacher pays attention to, interprets, and responds to the student's responses related to variables. The prospective teachers were asked to infer the students' thinking from the variables related to the tasks and suggest feedback accordingly. An analysis of the responses of 26 prospective teachers showed that it was not easy for prospective teachers to pay attention to the misconception of variables and that some of them did not make proper interpretations. Most prospective teachers who did not attend and interpret were found to have failed to provide an appropriate response due to a lack of overall understanding of variables. even though prospective teachers who did proper attend and interpret were found to have failed to respond appropriately due to a lack of empirical knowledge, even with proper attention and interpretation.
This study investigated the teaching strategies of two exemplary American teachers regarding word problems and their impact on students' ability to both understanding and solving word problems. The teachers commonly explained the background details of the background of the word problems. The explanation motivated the students' mathematical problem solving, helped students understand the word problems clearly, and helped students use various solving strategies. Emphasizing communication, the teachers also provided comfortable atmosphere for students to discuss mathematical ideas with another. The teachers' continuous questions became the energy for students to plan various problem solving strategies and reflect the solutions. Also, this research suggested a complementary model for Polya's problem solving strategies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.