• Title/Summary/Keyword: 수학적 사고

Search Result 662, Processing Time 0.021 seconds

중등영재학생들의 수학적 사고의 선호도와 논리적 문제의 해결능력에 관한 연구

  • Pak, Hong-Kyung;Lee, Woo-Dong
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.101-106
    • /
    • 2009
  • 수학적 사고의 입장에서 중등학생들이 수학적 문제해결에 논리적 사고와 직관적 사고가 어떻게 작용하는지를 연구하는 것은 수학교육에서 중요하고도 흥미로운 과제의 하나이다. 본 연구의 주된 목적은 중등학교 영재학생을 대상으로 이러한 문제를 조사하는 것이다. 특히 이들 중등영재학생들의 논리적 사고와 직관적 사고에 대한 선호도와 논리적 문제의 문제해결능력 사이의 관계를 조사한다.

  • PDF

Analysis of Pattern of Mathematical Interaction Occurring in the Elementary School Mathematics Classrooms (초등학교 수학교실에서 나타난 수학적 의사소통 유형 분석)

  • Cho, Young-Jun;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.681-700
    • /
    • 2010
  • These days, the importance of the mathematics interaction is strongly emphasized, which leads to the need of research on how the interaction is being practiced in the math class and what can be the desirable interaction in terms of mathematical thinking. To figure out the correlation between the mathematical interaction patterns and mathematical thinking, it also classifies mathematical thinking levels into the phases of recognizing, building-with and constructing. we can say that there are all of three patterns of the mathematics interactions in the class, and although it seems that the funnel pattern is contributing to active interaction between the students and teachers, it has few positive effects regarding mathematical thinking. In other words, what we need is not the frequency of the interaction but the mathematics interaction that improves students' mathematical thinking. Therefore, we can conclude that it is the focus pattern that is desirable mathematics interaction in the class in the view of mathematical thinking.

  • PDF

The Role of Analogical Reasoning in Mathematical Knowledge Construction (수학적 지식의 구성에서 유추적 사고의 역할)

  • Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.3
    • /
    • pp.355-369
    • /
    • 2009
  • Though there is no agreement on the definition of analogical reasoning, there is no doubt that analogical reasoning is the means of mathematical knowledge construction. Mathematicians generally have a tendency or desire to find similarities between new and existing Ideas, and new and existing representations. They construct appropriate links to new ideas or new representations by focusing on common relational structures of mathematical situations rather than on superficial details. This focus is analogical reasoning at work in the construction of mathematical knowledge. Since analogical reasoning is the means by which mathematicians do mathematics and is close]y linked to measures of intelligence, it should be considered important in mathematics education. This study investigates how mathematicians used analogical reasoning, what role did it flay when they construct new concept or problem solving strategy.

  • PDF

Types of Mathematical Thinking that Appeared in Challenge Math in the 5th and 6th Grade Math Teacher's Guidebooks (5, 6학년 수학 교사용 지도서의 도전 수학에 나타난 수학적 사고의 유형)

  • Yim, Youngbin
    • Education of Primary School Mathematics
    • /
    • v.25 no.2
    • /
    • pp.143-160
    • /
    • 2022
  • This study was conducted to discuss educational implications by analyzing the types of mathematical thinking that appeared in challenge math in 5th and 6th grade math teacher's guidebooks. To this end, mathematical thinking types that can be evaluated and nurtured based on teaching and learning contents were organized, a framework for analyzing mathematical thinking was devised, and mathematical thinking appearing in Challenge Math in the 5th and 6th grade math teachers' guidebooks was analyzed. As a result of the analysis, first, 'challenge mathematics' in the 5th and 6th grades of elementary school in Korea consists of various problems that can guide various mathematical thinking at the stage of planning and implementation. However, it is feared that only the intended mathematical thinking will be expressed due to detailed auxiliary questions, and it is unclear whether it can cause mathematical thinking on its own. Second, it is difficult to induce various mathematical thinking at that stage because the questionnaire of the teacher's guidebooks understanding stage and the questionnaire of the reflection stage are presented very typically. Third, the teacher's guidebooks lacks an explicit explanation of mathematical thinking, and it will be necessary to supplement the explicit explanation of mathematical thinking in the future teacher's guidebooks.

An Analysis of Teacher-Student Communication and Students' Mathematical Thinking in Sixth Grade Mathematics Classrooms (초등학교 6학년 수업에서의 수학적 의사소통과 학생의 수학적 사고 분석)

  • Hong, Woo-Ju;Pang, Jeong-Suk
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.201-219
    • /
    • 2008
  • The purpose of this study was to provide useful information for teachers by analyzing various levels of teacher-student communication in elementary mathematics classes and students' mathematical thinking. This study explored mathematical communication of 3 classrooms with regard to questioning, explaining, and the source of mathematical ideas. This study then probed the characteristics of students' mathematical thinking in different standards of communication. The results showed that the higher levels of teacher-student mathematical communication were found with increased frequency of students' mathematical thinking and type. The classroom that had a higher level of Leacher-student mathematical communication was exhibited a higher level of students' mathematical thinking. This highlights the importance of mathematical communication in mathematics c1asses and the necessity of further developing skills of mathematical communication.

  • PDF

Relationship between Divergent Thinking in Mathematical and Non-Mathematical Situations -Based on the TTCT; Figural A and the MCPSAT- (수학적 상황과 비수학적 상황에서의 확산적 사고의 관계 연구 - TTCT의 도형검사와 MCPSAT를 중심으로 -)

  • Hwang, Dong-Jou;Lee, Kang-Sup;Seo, Jong-Jin
    • Journal of Gifted/Talented Education
    • /
    • v.15 no.2
    • /
    • pp.59-76
    • /
    • 2005
  • We examined the relations between the score of the divergent thinking in mathematical (Mathematical Creative Problem Solving Ability Test; MCPSAT: Lee etc. 2003) and non-mathematical situations (Torrance Test of Creative Thinking Figural A; TTCT: adapted for Korea by Kim, 1999). Subjects in this study were 213 eighth grade students(129 males and 84 females). In the analysis of data, frequencies, percentiles, t-test and correlation analysis were used. The results of the study are summarized as follows; First, mathematically gifted students showed statistically significantly higher scores on the score of the divergent thinking in mathematical and non-mathematical situations than regular students. Second, female showed statistically significantly higher scores on the score of the divergent thinking in mathematical and non-mathematical situations than males. Third, there was statistically significant relationship between the score of the divergent thinking in mathematical and non-mathematical situations for middle students was r=.41 (p<.05) and regular students was r=.27 (p<.05). A test of statistical significance was conducted to test hypothesis. Fourth, the correlation between the score of the divergent thinking in mathematical and non-mathematical situations for mathematically gifted students was r=.11. There was no statistically significant relationship between the score of the divergent thinking in mathematical and non-mathematical situations for mathematically gifted students. These results reveal little correlation between the scores of the divergent thinking in mathematical and non-mathematical situations in both mathematically gifted students. Also but for the group of students of relatively mathematically gifted students it was found that the correlations between divergent thinking in mathematical and non-mathematical situations was near zero. This suggests that divergent thinking ability in mathematical situations may be a specific ability and not just a combination of divergent thinking ability in non-mathematical situations. But the limitations of this study as following: The sample size in this study was too few to generalize that there was a relation between the divergent thinking of mathematically gifted students in mathematical situation and non-mathematical situation.

Research about comparison on Lakatos' proofs and refutations with students' mathematical thinking (Lakatos의 증명 및 반박과 학생들의 수학적 사고의 비교에 관한 연구)

  • You, Hyun-Seung;Lee, Byung-Soo
    • Communications of Mathematical Education
    • /
    • v.22 no.3
    • /
    • pp.383-397
    • /
    • 2008
  • In problem solving, the necessity of mathematical thinking is absolute. In this paper, with an established theory about mathematical thinking, we will try to observe how the students can form mathematical thinking through a mathematical example in mathematical class by using Lakatos' process of proofs and refutations.

  • PDF

Analysis of Students' Mathematical Thinking Characteristics Appeared in the Process of Searching for All type of Triangle that Can be Made with Sphinx Puzzle (스핑크스퍼즐로 모든 삼각형 해법 찾기 과제에서 나타나는 학생들의 수학적 사고 특성 분석)

  • Bang, Sin Young;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.1
    • /
    • pp.165-184
    • /
    • 2013
  • In order to utilize Sphinx Puzzle in shape education or deductive reasoning, a lesson employing Dienes' six-stage theory of learning mathematics was structured to be applied to students of 6th grade of elementary school. 4 students of 6th grade of elementary school, the researcher's current workplace, were selected as subjects. The academic achievement level of 4 subjects range across top to medium, who are generally enthusiastic and hardworking in learning activities. During the 3 lessons, the researcher played role as the guide and observer, recorded observation, collected activity sheet written by subjects, presentation materials, essays on the experience, interview data, and analyzed them to the detail. A task of finding every possible triangle out of pieces of Sphinx Puzzle was given, and until 6 steps of formalization was set, students' attitude to find a better way of mathematical deduction, especially that of operational thinking and deductive thinking, was carefully observed and analyzed.

  • PDF

An Analysis of Mathematical Thinking and Strategies Appeared in Solving Mathematical Puzzles (수학퍼즐 해결과정에서 나타나는 수학적 사고와 전략)

  • Kim, Pansoo
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.295-306
    • /
    • 2019
  • Despite the popularity and convenient accessibility of puzzles, the variety of puzzles have led to a lack of research on the nature of the puzzle itself. In guiding certain skills, such as abstractness, creativity, and logic, a teacher should have the thinking skill and strategy that appear in solving puzzles. In this study, the mathematical thinking that appears in solving puzzles from the perspective of experts is identified, and the strategies and characteristics are described and classified accordingly. For this purpose, we analyzed 85 math puzzles including the well-know puzzles to the public, plus puzzles from a popular book for the gifted student. The research analysis shows that there are 6 types of mathematics puzzles in which require mathematical thinking.

An Analysis on Thinking Processes of Mathematical Gifted Students Using Think-aloud Method (사고구술법(思考口述法)을 이용한 수학(數學) 영재(英才)의 사고(思考) 특성(特性) 연구(硏究))

  • Hong, Jin-Kon;Kang, Eun-Joo
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.4
    • /
    • pp.565-584
    • /
    • 2009
  • This study is aimed at providing the theoretical framework of characteristics of mathematical thinking processes and structuring the thinking process patterns of the mathematical gifted students through the analysis of their cognitive thinking processes. For this purpose, this study is trying to analyze characteristics of mathematical thinking processes of the mathematical gifted students in an objective and a systematic way, by using think-aloud method. For comparative study, the analysis framework with the use of the thinking characteristic code as a content-oriented method and the problem-solving processes code as a process-oriented method was developed, and the differences of thinking characteristics between the two groups chosen by the coding system which represented the subjects' thinking processes in the form of the language protocol through thinking-aloud method were compared and analyzed.

  • PDF