• Title/Summary/Keyword: 수학적 논의

Search Result 2,394, Processing Time 0.025 seconds

Analysis on Elementary Mathematics Textbooks Based on Comparison between Mathematical Processes in 2009 Revised National Curriculum and Mathematical Practices in CCSSM (2009 개정 교육과정의 수학적 과정과 CCSSM의 수학적 실천의 비교에 따른 초등 수학 교과서 분석)

  • Lim, Miin;Chang, Hyewon
    • School Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The mathematical processes are strongly emphasized in 2009 revised national curriculum for mathematics and are expected to be complemented and extended in 2015 revised one. This study aims to investigate how much the processes are being implemented in mathematics classroom and select some elements which need complementation. To do this, we selected the mathematical practices of CCSSM as a reference, because it plays the corresponding role in the United States to the mathematical processes in Korea. We recognized common elements and different elements between the two and analyzed. Considering those, we searched the possibility of newer mathematical process and analyzed the 4th grade mathematics textbooks in relation to questions for mathematical practices. We provided the results of analyses and several suggestions for revising mathematics curriculum and textbooks.

수학 영재 판별을 위한 수학 창의적 문제해결력 검사 개발

  • Jo Seok-Hui;Hwang Dong-Ju
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2006.04a
    • /
    • pp.211-226
    • /
    • 2006
  • 이 연구는 수학 창의적 문제해결력을 바탕으로 수학 영재를 판별하기 위해서 수학 창의적 문제해결력 검사를 개발하고, 유창성만으로 수학 창의성을 평가한 이 검사 방법의 신뢰도와 타당도를 검증하는데 있다. 10개의 개방적인 수학 문제를 개발한 바, 수학적으로는 직관적 통찰력, 정보 조직력, 추론능력, 일반화 및 적용력, 반성적 사고력을 요구하는 문제들이다. 이 10문항을 영재교육기관에 입학하고자 지원한 초등학교 5학년 2,2029명에게 실시했다. 교사들은 각 문제에 대해 타당한 답을 제시한 빈도로 유창성을 측정했다. 학생들의 반응은 Rasch의 1모수 문항반응모형을 기반으로 한 BIGSTEPTS 로 분석했다. 문항반응 분석결과, 이 검사는 창의성을 유창성만으로 측정할 때도 영재판별 검사로서 신뢰도, 타당도, 난이도, 변별도가 모두 양호한 것으로 나타났다. 덜 정의되고, 덜 구조화되고, 신선한 문제가 영재교육 프로그램에 지원한 학생들의 수학 창의성을 측정하는데 좋은 문제임을 확인할 수 있었다. 또한 이 검사는 남학생이 여학생보다 수학 창의적 문제해결력이 우수하며, 영재교육원에 지원한 학생들이 수학영재학급에 지원한 학생들보다 더 우수함을 확인해 주었다.

  • PDF

인지적으로 안내된 교수(CGI)에 대한 고찰

  • Kim, Won-Gyeong;Baek, Seon-Su
    • Communications of Mathematical Education
    • /
    • v.14
    • /
    • pp.27-41
    • /
    • 2001
  • 인지적으로 안내된 교수(CGI)는 학생들의 수학적 사고(특히, 비형식적 지식)의 발달; 그러한 발달에 영향을 미치는 교수; 교수 실제에 영향을 미치는 교사의 지식과 신념들; 교사의 지식, 신념들, 실제들이 학생들의 수학적 사고에 대한 이해에 의해 영향을 받는다는 점에 초점을 둔 통합된 연구 프로그램이다. 본 논문에서는 아동의 비형식적인 지식을 중시하는 최근의 연구들을 고찰하고, CGI를 위한 수업을 어떻게 조직하며, 그러한 교수법이 수업을 어떻게 진행할 것인지에 대한 구체적이고 명확한 지침을 제공하지 않으므로 CGI를 적용하는 교실들의 유사점을 살펴본다. 그리고, 마지막으로 최근의 연구들을 고찰함으로써 CGI의 효과를 알아본다.

  • PDF

A mathematics teacher's discursive competence on the basis of mathematical competencies (수학교과역량과 수학교사의 담론적 역량)

  • Choi, Sang-Ho;Kim, Dong-Joong
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.377-394
    • /
    • 2019
  • The purpose of this study is to scrutinize the characteristics of a teacher's discursive competence on the basis of mathematical competencies. For this purpose, we observed all semester-long classes of a middle school teacher, who changed her own teaching methods for the last 20 years, collected video clips on them, and analyzed classroom discourse. Data analysis shows that in problem solving competency, she helped students focus on mathematically important components for problem understanding, and in reasoning competency, there was a discursive competence which articulated thinking processes for understanding the needs of mathematical justification. And in creativity and confluence competency, there was a discursive competence which developed class discussions by sharing peers' problem solving methods and encouraging students to apply alternative problem solving methods, whereas in communication competency, there was a discursive competency which explored mathematical relationships through the need for multiple mathematical representations and discussions about their differences. These results can provide concrete directions to developing curricula for future teacher education by suggesting ideas about how to combine practices with PCK needed for mathematics teaching.

종이접기의 대수학적 의미와 교수학적 활용

  • Sin, Hyeon-Yong;Han, In-Gi;Seo, Bong-Geon;Choe, Seon-Hui
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.457-475
    • /
    • 2002
  • 수학사를 통해 볼 때 눈금 없는 자와 컴퍼스를 이용한 작도 가능성의 문제는 여러 면에서 의미가 있었다. 종이 접기는 수학과는 무관하게 나름대로 많은 흥미를 끌어 왔다. 그러나 종이 접기가 기하학적 작도와 흥미 있는 관련이 있음이 알려지면서 수학적으로도 연구되었고 더 나아가 수학 학습에의 유의미한 활용 가능성이 제안되었다. 본 글에서는 종이 접기에서 괄목할 만한 수학적 성질을 고전적인 작도 가능성의 문제와 다항식의 거듭 제곱근에 의한 가해성 등과 관련하여 고찰한다. 또, 초 ${\cdot}$ 중등 학교에서 활용 가능한 가상의 수업 프로토콜도 제시한다.

  • PDF

대학수학에 필요한 기초 개념 이해도 측정

  • Kim, Byeong-Mu
    • Communications of Mathematical Education
    • /
    • v.19 no.1 s.21
    • /
    • pp.57-68
    • /
    • 2005
  • 무한, 극한, 연속, 미분가능과 같은 중요한 수학적 개념을 이해하는 것은 대학수학 교양과정의 미분적분학 수강생들에게 필수적이다. 이들 개념의 이해 수준을 부록1, 2, 3을 통해 알아보고 평가를 분석한다. 평가결과는 이해도가 낮은 학생들을 위한 새로운 교수법이 필요성을 알게 하고 수학적 기본개념의 이해를 증진시키는데 정의의 정확한 이해를 돕고 구체적인 예제를 제시하는 교수법 개발에 수학교수의 노력을 필요로 한다.

  • PDF

창의성 신장을 위한 수학 게임 자료 개발 연구

  • Lee, Gyeong-Eon
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.201-210
    • /
    • 2001
  • 게임은 그 자체로 매우 흥미가 있을 뿐만 아니라, 많은 규칙을 포함하며, 이런 규칙들을 찾아내는 활동은 학생들의 창의적 사고력 향상에 큰 도움을 줄 것이다. 본 연구에서는 다양한 게임들 중에서 수학적 개념이나 수학 문제해결의 아이디어와 관련된 수학 게임을 중심으로, 게임의 규칙과 승리 전략을 탐구하고 이를 수학적으로 표현하는 할 수 있는 기회를 제공하는 몇몇 게임들을 개발하여 소개할 것이다.

  • PDF

벡터를 이용한 삼각형의 무게중심에 관한 정리 증명에 관련된 탐구 능력 추출

  • Han, In-Gi
    • Communications of Mathematical Education
    • /
    • v.13 no.1
    • /
    • pp.305-316
    • /
    • 2002
  • 벡터는 수학 문제해결을 위한 중요한 도구로써, 벡터를 이용한 문제해결 과정에서 학생들은 수학적 탐구 활동에 관련된 풍부한 경험을 가질 수 있다. 본 연구에서는 벡터를 이용하여 삼각형의 무게중심에 관한 정리를 증명하기 위한 수학적 탐구 능력이나 아이디어를 학생들이 준비할 수 있도록 정리 증명과 관련된 몇몇 문제들을 체계화하여 제시하였다. 이 문제들을 해결하는 과정에 관련된 탐구 능력을 추출하였으며, 체계화된 문제에 바탕을 둔 무게중심에 관한 정리 증명을 제시하였고, 증명 과정과 관련된 수학적 탐구 능력을 제시하였다.

  • PDF

The Empty Set as a Mathematical Object (수학적 대상으로서의 공집합)

  • Ryou, Miyeong;Choi, Younggi
    • Communications of Mathematical Education
    • /
    • v.35 no.4
    • /
    • pp.413-423
    • /
    • 2021
  • This study investigated the empty set which is one of the mathematical objects. We inquired some misconceptions about empty set and the background of imposing empty set. Also we studied historical background of the introduction of empty set and the axiomatic system of Set theory. We investigated the nature of mathematical object through studying empty set, pure conceptual entity. In this study we study about the existence of empty set by investigating Alian Badiou's ontology known as based on the axiomatic set theory. we attempted to explain the relation between simultaneous equations and sets. Thus we pondered the meaning of the existence of empty set. Finally we commented about the thoughts of sets from a different standpoint and presented the meaning of axiomatic and philosophical aspect of mathematics.