• Title/Summary/Keyword: 수학적 개념 분석모형

Search Result 36, Processing Time 0.021 seconds

Analysis of the Equality Sign as a Mathematical Concept (수학적 개념으로서의 등호 분석)

  • 도종훈;최영기
    • The Mathematical Education
    • /
    • v.42 no.5
    • /
    • pp.697-706
    • /
    • 2003
  • In this paper we consider the equality sign as a mathematical concept and investigate its meaning, errors made by students, and subject matter knowledge of mathematics teacher in view of The Model of Mathematic al Concept Analysis, arithmetic-algebraic thinking, and some examples. The equality sign = is a symbol most frequently used in school mathematics. But its meanings vary accor ding to situations where it is used, say, objects placed on both sides, and involve not only ordinary meanings but also mathematical ideas. The Model of Mathematical Concept Analysis in school mathematics consists of Ordinary meaning, Mathematical idea, Representation, and their relationships. To understand a mathematical concept means to understand its ordinary meanings, mathematical ideas immanent in it, its various representations, and their relationships. Like other concepts in school mathematics, the equality sign should be also understood and analysed in vie w of a mathematical concept.

  • PDF

Analytical Modeling of a Buffered $\times$a switch (Buffered a$\times$a Switch의 성능분석)

  • 박경화;양명국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.630-632
    • /
    • 1998
  • 본 논문에서는, Multi[le-Buffered a$\times$a Crossbar 수위치의 성능 분석 모형을 제안하고 스위치에 장착된 buffer 의 개수의 중가에 다른 성능 향상 추이를 분석하였다. buffered스위치 기법은 다수 데이터 패킷을 동시에 전송할 때 네트웍에서 발생되는 충돌문제를 효과적으로 해결할 수 있는 방법으로 널리 알려져있다. 제안된 성능 예측 모형은 스위치 입력 단에 유입되는 데이터 패킷이 buffered 스위치 내부에서 전송되는 유형을 확률적으로 분석하여 수립되었다. 모형의 수학적 복잡도 해결을 위하여 확률 식 유도 과정 등에 steady state 개념을 도입하였다. 제안한 모형은 스위치 크기 및 스위치에 장착된 buffer의 개수와 무관하게 buffered a$\times$a 크로스바 스위치의 성능 예측을 가능케 하고, 나아가서 이들로 구성된 다층 연결 망의 성능 분석에 확대 적용이 가능하다. 제안한 수학적 성능 분석 연구는 실효성 검증을 위하여 병행된 시뮬레이션 결과는 미세한 오차 범위 내에서 모형의 예측 데이터와 일치하는 결과를 보여 분석 모형의 타당성을 입증하였다. 또한, 분석 결과 스위치에 소수의 버퍼를 장착했을 때, throughput이 크게 증가하지만, 네 개 이상의 버퍼를 장착되는 버퍼의 개수가 네 개 정도일 경우 가격 대 성능비가 우수한 것으로 추론되었다.

  • PDF

Design of Teacher's Folding Back Model for Fundamental Theorem of Calculus (미적분학의 기본정리에 대한 교사의 Folding Back 사고 모형 제안)

  • Kim, Bu-Mi;Park, Ji-Hyun
    • School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.65-88
    • /
    • 2011
  • Epistemological development process of the Fundamental Theorem of Calculus is considered in a history of mathematical notions and the genetic process of the Fundamental Theorem is arranged by the order of geometric, algebraic and formalization steps. Based on this, we studied students' episte- mological obstacles and error and analyzed the content of textbooks related the Fundamental Theorem of Calculus. Then, We developed the "Folding Back Model" of the fundamental theorem of calculus for students to lead meaningful faithfully. The Folding Back Model consists of "the Framework of thou- ght"(figure V-1) and "the Model of genetic understanding of concept"(figure V-2). The framework of thought in the Folding Back Model is included steps of pedagogical intervention which is used "the Monitoring working questions"(table V-3) by the mathematics teacher. The Folding Back Model is applied the Pirie-Kieren Theory(1991), history of mathematical notions and students' epistemological obstacles to practical use of instructional design. The Folding Back Model will contribute the professional development of mathematics teachers and improvement of thinking skills of students when they learn the Fundamental Theorem of Calculus.

  • PDF

초등수학 영재교육 프로그램에 대한 수학적 학습 태도 분석에 관한 연구 - 제주대학교 과학영재교육원 초등수학반 기초과정을 중심으로 -

  • Kim, Hae-Gyu;Kim, Dae-Jin
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.341-358
    • /
    • 2004
  • 본 연구에서는 영재교육 프로그램의 효과에 관한 실증적인 연구를 위해서 트레핑거의 자기 주도적 학습 모형과 렌줄리의 3부 심화학습모형을 이용하여, 제7차 초등수학 교육과정에서 다루어지고 있는 기본적인 개념뿐만 아니라, 영재교육과정과 관련된 주제들을 중심으로 초등 수학 영재아들의 자기 주도적 학습 능력 신장을 위한 프로그램을 자체 개발하여, 개발된 영재교육프로그램을 이수하기 전과 이수 후의 수학적 학습 태도에 차이가 있는지를 검증하기 위해서, 제주대학교 과학영재교육원 초등수학반 아동들을 대상으로 사전 ${\cdot}$ 사후 수학적 학습 태도를 분석하였다.

  • PDF

A Study on the Abstraction of Learning Materials from the Isoperimetric Problem to Develop a Spatial Sense (등주문제 분석을 통한 공간감각 계발을 위한 학습자료 추출 연구)

  • Choi, Keunbae;Chae, Jeong-Lim
    • School Mathematics
    • /
    • v.16 no.4
    • /
    • pp.677-690
    • /
    • 2014
  • The main goals of learning geometry include developing spatial ability and concepts on geometric objects based on understanding the attributes and relationships of them. While the instructions on geometric objects follow the concept development models, the ones on spatial ability are designed from the perspective of geometric transformation. However, there is a need for instructional materials to emphasizing the relationships among geometric concepts. This study hypothesizes that spatial ability stems from the intuitive understanding of geometric objects and the relational understanding on concepts, and it considers the isoperimetric problems as instructional materials to foster spatial ability.

  • PDF

Development of Mathematics Learning Contents based on Storytelling for Concept Learning (초등학교 수학과 개념학습을 위한 스토리텔링 기반학습 콘텐츠 개발)

  • Oh, Young-Bum;Park, Sang-Seop
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.4
    • /
    • pp.537-545
    • /
    • 2010
  • The purpose of this paper is to develop mathematics learning contents for elementary school 3rd graders and to verify the educational effectiveness of contents developed. An ADDIE model was applied to develop mathematics learning contents based on storytelling for concept learning. After extracting 54 concepts from the mathematics curriculum, researchers designed strategies using concepts that were combined with context which is familiar to young students. Researchers implemented a survey and interview to students and teachers to verify the effectiveness of contents. As a result, the understanding, interest, concentration, and expectation of students toward the contents developed were very high, and teachers also mentioned that these contents could be very useful teaching materials for motivation.

  • PDF

Longitudinal analysis of the direct and indirect influence of academic self-concept and academic support of teachers and parents on academic achievement in mathematics (학업적 자아개념 및 교사와 부모의 학업적 지원이 수학 학업성취도에 미치는 직·간접적인 영향력에 대한 종단적 분석)

  • Kim, YongSeok
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.127-156
    • /
    • 2022
  • This study used the data of students from the 6th grade to the 3rd grade of middle schoolin the Korean Educational Longitudinal Study 2013 and classified them into subgroups with similar longitudinal changes in math academic achievement. In addition, the influence of longitudinal changes in the group's academic self-concept and teachers and parents academic support on the longitudinal changes in math academic achievement were analyzed, either directly or indirectly. As a result of the analysis, it was found that the academic self-concept of each group had a positive influence on the academic achievement in mathematics. In addition, the academic support of teachers and parents was found to have a positive influence on the academic achievement in mathematics through the mediating of the academic self-concept. In terms of direct and indirect influence on academic self-concept and math vertical scale scores, it was found that teachers' academic support had more influence than parents' academic support. The educational implications of these points were discussed.

Cognitive Psychological Approaches on Analysing Students' Mathematical Errors (인지심리학의 관점에서 수학적 오류의 분석가능성 탐색)

  • 김부미
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.239-266
    • /
    • 2004
  • This article presents new perspectives for analysing and diagnosing students' mathematical errors on the basis of Pascaul-Leone's neo-Piagetian theory. Although Pascaul-Leone's theory is a cognitive developmental theory, its psychological mechanism gives us new insights on mathematical errors. We analyze mathematical errors in the domain of proof problem solving comparing Pascaul-Leone's psychological mechanism with mathematical errors and diagnose misleading factors using Schoenfeld's levels of analysis and structure and fuzzy cognitive map(FCM). FCM can present with cause and effect among preconceptions or misconceptions that students have about prerequisite proof knowledge and problem solving. Conclusions could be summarized as follows: 1) Students' mathematical errors on proof problem solving and LC learning structures have the same nature. 2) Structures in items of students' mathematical errors and misleading factor structures in cognitive tasks affect mental processes with the same activation mechanism. 3) LC learning structures were activated preferentially in knowledge structures by F operator. With the same activation mechanism, the process students' mathematical errors were activated firstly among conceptions could be explained.

  • PDF

Effects of the Problem-based Learning Utilizing Algorithms in a Math Class of an Elementary School (초등학교 수학 수업의 인지기제 활용 문제기반학습 효과분석)

  • Lee, Myung-Geun;Kang, Su-Yeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.159-162
    • /
    • 2011
  • 이 연구는 인지기제를 활용한 문제기반학습이 학습자의 학업성취도와 수학적 태도에 미치는 효과를 분석하였다. 우선 초등학교 수학과 학습에서 학습자들의 인지과정을 안내할 수 있는 문제기반학습 설계를 위해 문제기반학습 모형에 란다(N. Landa)의 인지기제 교수학습설계이론을 적용하여 인지기제 활용 문제기반학습 모형을 도출하였다. 그리고 초등학교 수학과 4학년 2학기 4개 단원의 8차시를 추출하여 문제를 개발하고 서울시 소재 'ㅈ' 초등학교 4학년 학생들 중 동질집단으로 확인된 2개 학급에 이 모형을 적용하였다. 연구 결과 인지기제 활용 문제기반학습을 적용한 실험집단과 적용하지 않은 통제집단 간 학업성취도 효과에 있어서 통계적으로 유의한 차이가 있었다. 또한 수학적 태도와 관련해서는 하위영역 중 수학에 대한 자아개념과 수학에 대한 태도 영역에서는 유의한 차이가 있었으나 수학에 대한 학습습관 영역에서는 유의한 차이를 보이지 않았다. 특히 세부영역별로 자신감, 흥미, 우월감, 주의집중, 목적의식, 자율학습에 있어서 유의한 차이를 보였으며, 학습기술 적용과 성취동기에 대해서는 유의한 차이가 없었다.

  • PDF

A Study on the Effect of Applying Jigsaw Cooperative Learning on Mathematical Affective Characteristics of Vocational High School Students (Jigsaw 모형을 적용한 수학수업이 특성화고 학생의 정의적 발달에 미치는 영향)

  • You, Sang Eun;Son, Hong Chan
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.3
    • /
    • pp.309-328
    • /
    • 2016
  • In this study we aimed to find out if a mathematics lesson with Jigsaw model can help to change such negative mathematical affective characteristic to a positive one. The results of the study were as in the following. First, the mathematics lessons applied Jigsaw model can help to inspire curiosity and motivation of students. During the lessons, communication among students was vitalized. Such communication inspired learner's curiosity and learning motivation. The expert group and home group activities in the Jigsaw model made the learner's question-answering activities more instantaneous and frequent. Second, the mathematics lessons applied Jigsaw model can help students to become aware of the value of mathematical concepts and formula.