This article aims at providing implication for teacher preparation program through interpreting pre-service teachers' knowledge by using Shulman-Fischbein framework. Shulman-Fischbein framework combines two dimensions (SMK and PCK) from Shulman with three components of mathematical knowledge (algorithmic, formal, and intuitive) from Fischbein, which results in six cells about teachers' knowledge (mathematical algorithmic-, formal-, intuitive- SMK and mathematical algorithmic-, formal-, intuitive- PCK). To accomplish the purpose, five pre-service teachers participated in this research and they performed a series of tasks that were designed to investigate their SMK and PCK with regard to students' misconception in the area of geometry. The analysis revealed that pre-service teachers had fairly strong SMK in that they could solve the problems of tasks and suggest prerequisite knowledge to solve the problems. They tended to emphasize formal aspect of mathematics, especially logic, mathematical rigor, rather than algorithmic and intuitive knowledge. When they analyzed students' misconception, pre-service teachers did not deeply consider the levels of students' thinking in that they asked 4-6 grade students to show abstract and formal thinking. When they suggested instructional strategies to correct students' misconception, pre-service teachers provided superficial answers. In order to enhance their knowledge of students, these findings imply that pre-service teachers need to be provided with opportunity to investigate students' conception and misconception.
In this paper we consider the equality sign as a mathematical concept and investigate its meaning, errors made by students, and subject matter knowledge of mathematics teacher in view of The Model of Mathematic al Concept Analysis, arithmetic-algebraic thinking, and some examples. The equality sign = is a symbol most frequently used in school mathematics. But its meanings vary accor ding to situations where it is used, say, objects placed on both sides, and involve not only ordinary meanings but also mathematical ideas. The Model of Mathematical Concept Analysis in school mathematics consists of Ordinary meaning, Mathematical idea, Representation, and their relationships. To understand a mathematical concept means to understand its ordinary meanings, mathematical ideas immanent in it, its various representations, and their relationships. Like other concepts in school mathematics, the equality sign should be also understood and analysed in vie w of a mathematical concept.
This paper is the case study how we can apply the appropriate teaching method in order to correct the misconception of middle and high school students in preservice teachers' education. Through the review of previous research and literature, we categorized students' misconception and sought the teaching method to teach preservice teachers. During this process, we did according to PBL and preservice teachers also tried to find the teaching method for students. And thus we were able to suggest the appropriate teaching method which was effective in correcting the misconception of middle & high school students along with their fine understanding of mathematical concepts. Further, preservice teachers acknowledged cooperative teaching & learning and the importance of it as well as the self-directed teaching and learning.
In recent papers (Pak et al., Pak and Kim), it was suggested to positively use the history of mathematics for the education of mathematics and discussed the determining problem of the order of instruction in mathematics. There are three kinds of order of instruction - historical order, theoretical organization, lecturing organization. Lecturing organization order is a combination of historical order and theoretical organization order. It basically depends on his or her own value of education of each teacher. The present paper considers a concrete problem determining the order of instruction for the concept of angle. Since the concept of angle is defined in relation to figures, we have to solve the determining problem of the order of instruction for the concept of figure. In order to do this, we first investigate a historical order of the concept of figure by reviewing it in the history of mathematics. And then we introduce a theoretical organization order of the concept of figure. From these basic data we establish a lecturing organization order of the concept of figure from the viewpoint of problem-solving. According to this order we finally develop the concept of angle and a related global property which leads to the so-called Gauss-Bonnet theorem.
Investigation of the students' mathematical misconceptions is very important for improvement in the school mathematics teach]ng and basis of curriculum. In this study, we categorize second-grade middle school students' misconceptions on the learning of linear function and make a comparative study of the error-remedial effect of students' collaborative learning vs explanatory leaching. We also investigate how to change and advance students' self-diagnosis and treatment of the milton ceptions through the collaborative learning about linear function. The result of the study shows that there are three main kinds of students' misconceptions in algebraic setting like this: (1) linear function misconception in relation with number concept, (2) misconception of the variables, (3) tenacity of specific perspective. Types of misconception in graphical setting are classified into misconception of graph Interpretation and prediction and that of variables as the objects of function. Two different remedies have a distinctive effect on treatment of the students' misconception under the each category. We also find that a misconception can develop into a correct conception as a result of interaction with other students.
The aim of this paper is to explore and understand, using in-depth interviews, the participant's interests and discourse analytic expressions in studying the notion of infinity and limit. In addition we tried to understand how the participant's ways of dealing with math and thinking patterns on the polygons whose boundary is infinite but area is finite as they brought up such examples. Further follow-up questions are posed on the infinite sum of a smallest number close to 0 and the sum of infinite sets of different smallest numbers close to 0. Larger aspects of two pre-service teachers' subjective thinking patterns and colloquial discourses were sketched by contrasting the three posed tasks. Cross case discussions are provided with several suggestions for the future research directions.
앞으로의 수학교육은 직관과 조작 활동에 바탕을 둔 경험에서 수학적 형식, 관계, 개념, 원리 및 법칙 등을 이해하도록 지도되어야 한다. 따라서 추상적인 수학적 지식을 다양한 수학 교육공학 매체와 적합한 상황과 대상을 제공할 수 있는 컴퓨터 응용소프트웨어를 활용하여, 실제 수업에서 학생 스스로 시각적${\cdot}$직관적으로 개념을 재구성할 수 있도록 여러 가지 도입 및 전개 방안을 제시하고자 한다.
The concept of Function is not just a single concept but an integrated concept that includes various mathematic topics such as arithmetics, geometry and so on. Therefore, the concept of function is the basic principal underlying mathematics. Moreover, we should think of function as conceptual expedient for understanding the phenomena in the variously changing real world. Therefore in this article, I would like to consider the concept of an integrated function through historical investigation. Especially, from the middle ages to the 19th century, representation which related to the function has been evolved, and therefore, I will consider function as an integrated concept through changing the concept of function.
The term "objectification" has various definitions or perspectives. Nevertheless, it's pursued commonly by groups from various perspectives who emphasize the activities of becoming aware of a process as a totality, realizing that transformations can act on that totality, that is, turning processes into object. The purpose of this study is to identify how students objectify the concept of repetition regarding permutation and combination and find difficulties of objectification focusing on teacher's and students' discourse from common emphasis on previous researches associated with objectification. Students objectified the concept of repetition by replacing talk about processes with talk about objects regarding repetition and using discursive forms that presented phenomena in an impersonal way. The difficulties of objectification were derived from close linkage between the way of using keywords regarding repetition and everyday language.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.