• Title/Summary/Keyword: 수평강성

Search Result 324, Processing Time 0.033 seconds

Estimation of Flexural Strength of Hollow Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 중공형 콘크리트 충전 강관말뚝의 휨강도 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.91-100
    • /
    • 2019
  • Hollow prestressed concrete-filled steel tube (HCFT) piles, which combines PHC piles inside thin-wall steel tubes, were developed to increase the flexural strength of the pile with respect to the lateral load. Since P-M curves are needed for evaluating the structural safety of piles when applying HCFT piles to fields, equations for plotting P-M curves of HCFT piles in limit states were proposed. When the yield strength is applied to the steel tube and PC steel bar of HCFT piles, the proposed equations significantly underestimated the flexural strength of HCFT piles. Unlike the flexural strength test results, the proposed equations also provide greater flexural strengths for 12 mm thick steel pipe piles with the same diameter than for HCFT piles. However, when the ultimate strengths are used instead of the yield strengths for the steel tube and PC steel bar, the proposed equations provide the flexural strengths very close to the flexural strength test results.

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Behavior of Three Story Bearing Wall Structure under Lateral toad Reversals (반복 수평하중을 받는 3층 철근콘크리트 내력벽 아파트 구조물의 거동 특성)

  • Chang Kuk-Kwan;Oh Young-Hun;Kim Ki-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.627-634
    • /
    • 2004
  • The purpose of this study is to investigate seismic performance of a bearing wall system for apartment buildings. An 1/3 scale three-story specimen was constructed and tested under cyclic lateral loads. The specimen was consisted of pierced walls and coupling elements as well as floor slabs. The bearing wall system is considered to have a adequate deformation capacity up to $2.0\%$ of roof drift ratio, and the experimental results showed the ductile load-deformation characteristics even though some walls were failed in shear Nonlinear analysis was peformed to compare the load-deformation curve obtained from the experimental program. The result of nonlinear analysis could be useful to predict the actual behavior characteristics of the bearing wall system subjected to lateral loads.

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

A Study on RF MEMS Switch with Comb Drive (Comb drive를 이용한 RF MEMS 스위치에 관한 연구)

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.7-12
    • /
    • 2008
  • This paper presents a lateral resistive contact RF MEMS switch using comb drive. Our goal was to fabricate the RF MEMS switch with high reliability and good RF characteristics for front end module in wireless transceiver system. Therefore, comb drive is used for large contact force in order to achieve low insertion loss and small off-state capacitance in order to achieve high isolation. The single crystalline silicon is used for mechanical reliability. As a result, the developed switch showed insertion loss less than 0.44 dB at 2 GHz, isolation greater than 60 dB, and low actuation voltage at 26 V.

An Experimental Study on the Strength of the Frame consisting of Concrete Filled Steel Tubular Column-H Beam under Alternately Repeated Horizontal Loading (반복하중을 받는 콘크리트충전 강관기둥-H형강보 골조의 강도에 관한 실험적 연구 -접합부 보강형식과 콘크리트충전에 따른 효과-)

  • Lee, Seong Do;Kim, Pil Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.641-655
    • /
    • 1998
  • It researched several jointing-methods of frame consisting of a concrete-filled steel tubular column and H-shaped beam. These beam-to-column connections is parameters to following: columns of square shape pipe infilled with or without concrete, joints assembled two types of diaphragm, outside-type and through-type. And it is testing that cyclically lateral loadings used hydraulic ram. In testing. we'll be on purposed to estimate the hysteretic behavior, strength and stiffness, energy absorption capacity, deformation capacity and failure configuration of each specimen. It is concluded that the frame specimens with outside-type are more stable and exhibit more energy absorption capacity compared with the through-type, in column of filled with concrete.

  • PDF

K-Ar Ages of Cretaceous Fossil Sites, Seoyuri, Hwasun, Southern Korea (화순 서유리의 백악기 화석산지에 대한 K-Ar 연대)

  • Kim, Cheong Bin;Kang, Seong Seung
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.618-626
    • /
    • 2012
  • The Cretaceous fossil sites of Seoyuri in Hwasun was designated as the Korean Natural Monument No. 487 in November 2007. It provides important resources for paleoenvironmental studies, including theropod trackways, plant fossils, mudcracks, ripple marks, and horizontal bedding. The Cretaceous sedimentary strata contain a wide variety of volcanic pebbles, 5-40 cm in diameter in the lower portion and are overlain by the Late Cretaceous Hwasun andesite. Whole rock absolute K-Ar age determinations were performed on six volcanic pebbles from the Cretaceous sedimentary strata and on two samples from the overlaying Hwasun andesite. These ages indicate that the rocks belong to the period between the Turonian of the late Cretaceous (91-70 Ma) and the Pliocene age of the early Cenozoic ($63.4{\pm}1.2$ and $62.1{\pm}1.2$ Ma). Thus, the K-Ar ages indicate that the maximum geological age of the dinosaur track-bearing sedimentary deposits is about ca. 70 Ma. Therefore, it suggests that the age is comparable to the formation ages of the dinosaur footprints-bearing deposits in Sado area of Yeosu (71-66Ma).

Analysis on Tension Response of Mooring Line by Lateral Excitation (수평가진에 의한 계류라인의 장력응답 해석)

  • Jung Dong Ho;Kim Hyeon Ju;Moon Deok Su;Park Han Il;Choi Hak Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • A mooring system can be applied to keep the position of a floating structures. In this study, the structural analysis is carried out to analyze the dynamic characteristics of a mooring line for a floating breakwater. A three-dimensional equations of motion for a submerged chain are derived. Bending stiffness is considered for the necessary restoring force in the regions of zero tension. A fortran program is to be developed by employing finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. The results of simulation show good agreement in tension response pattern with the experimental results of a reference. The results of this study can contribute for the design of mooring system for a floating breakwater.

  • PDF

A Study on Buckling Behavior of Shallow Circular Arches (낮은 원호아치의 좌굴거동에 대한 연구)

  • 김연태;허택녕;오순택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.87-94
    • /
    • 1998
  • Behavioral characteristics of shallow circular arches with dynamic loading and different end conditions are analysed. Geometric nonlinearity is modelled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion, and the Newmark method is adopted in the approximation of time integration. The behavior of arches is analysed using the buckling criterion and non-dimensional time, load and shape parameters which Humphreys suggested. But a new deflection-ratio formula including the effect of horizontal displacement plus vertical displacement is presented to apply for the non-symmetric buckling problems. Through the model analysis, it's confirmed that fix-ended arches have higher buckling stability than hinge-ended arches, and arches with the same shape parameter have the same deflection ratio at the same time parameter when loaded with the same parametric load.

  • PDF

The Evaluation of Damage Behaviour of Adjacent Structures in Urban Excavation (도심지 흙막이 굴착시 인접구조물의 손상 평가연구)

  • 김학문;황의석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.351-361
    • /
    • 2003
  • Brick wall models with window opening, length 1.844m $\times$ height 0.6m, representing 2-story building was constructed on a scale of 1/10 of actual size of brick building for the investigation of damage mechanism. Six settlement troughs presenting six stages of excavation were simulated by Peck(1969) and O'Rourke et al.(1976) methods. The results from the model tests using Peck(1969) and O'Rourke et al.(1976) method indicated that angular distortion of brick wall by O'Rourke et at. method was 21% greater than that of Peck method. Horizontal displacement by O'Rourke et al.(1976) was 24% greater than that of Peck. When the degree of building damage for the O'Rourke et al. method of settlement trough is plotted on the damage level graph(Boscardin & Cording, 1989), damage level becomes much more severe than the level obtained by peck's method. Also, building stiffness and soil-structure interface are considered important factors of expressing building damage.