• Title/Summary/Keyword: 수치 적분

Search Result 753, Processing Time 0.028 seconds

Two Dimensional Elasto-plastic Stress Analysis by the B.E.M. (경계요소법에 의한 2차원 탄소성응력해석)

  • 조희찬;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.621-629
    • /
    • 1992
  • This study is concerned with an application of the Boundary Element Method to 2-dimensional elastoplastic stress analysis on the material nonlinearities. The boundary integral formulation adopted an initial stress equation in the inelastic term. In order to determine the initial stress increment, the increment of initial elastic strain energy due to elastic increment in stressstrain curve was used as the convergence criterion during iterative process. For the validity of this procedure, the results of B.E.M. with constant elements and NISA with linear elements where compared on the thin plate with 2 edge v-notches under static tension and the thick cylinder under internal pressure. And this paper compared the results of using unmedical integral with the results of using semi-analytical integral on the plastic domain integral.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Dynamic Boundary Element Analysis of Underground Structures Using Multi-Layered Half-Plane Fundamental Solutions (2차원 다층 반무한해를 이용한 지하구조계의 동적 경계요소 해석)

  • 김문겸;이종우;조성용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.59-68
    • /
    • 1997
  • In analysis of underground structures, the effects of artificial boundary conditions are considered as one of the major reasons for differences from experimental results. These phenomena can be overcome by using the boundary elements which satisfy the multi-layered half space conditions. The fundamental solutions of multi-layered half-space for boundary element method is formulated satisfying the transmission and reflection of waves at each layer interface and radiation conditions at bottom layer. The governing equations can be obtained from the displacements at each layer which are expressed in terms of harmonic functions. All types of waves can be included using the complete response from semi-infinite integrals with respect to horizontal wavenumbers using expansion of Fourier series and Hankel transformation. Two dimensional Green's functions are derived from cylindrical Navier equations and potentials performing infinite integration in y-direction. In this case, it is effective to transform into two dimensional problem using semi-analytical integration and sinusoidal Bessel function. Some verifications are given to show the accuracy and efficiency of the developed method, and numerical examples to demonstrate the dynamic behavior of underground with various properties.

  • PDF

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

Numerical Simulation of Turbidity Currents Developing in Soyang Reservoir using Layer-Averaged Model (층적분모형을 이용한 소양호 부유사 밀도류 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.72-72
    • /
    • 2018
  • 우리나라의 대형 저수지에 담수된 수체는 여름에 온도가 높은 표수층과 온도가 낮은 심수층, 그리고 두 층 사이에서 온도가 크게 변화되는 변온층으로 나뉘게 된다. 여름 홍수기에 상류 하천에서 저수지로 유입되는 부유사는 큰 밀도를 가지기 때문에 저수지의 바닥을 타고 하층 밀도류의 형태로 저수지 하류로 전파된다. 그러나 밀도류가 성층화된 저수지의 변온층에 도달하면 심수층과 변온층 하층의 낮은 온도로 인해 발생하는 수체의 큰 밀도로 하층으로 더 침투하지 못하고 변온층이나 심수층 상층에서 남아 하류에 중층밀도류의 형태로 전파된다. 대량의 탁수를 하류에 방류하면 하류 수질에 문제가 발생되며 저수시키면 댐 수질 및 심수층 생물체의 태양광 차단 문제가 발생되므로 저수지에서 밀도류의 조절은 대형 저수지 운영에 매우 중요한 사항이다. 따라서 본 연구의 목적은 층적분 모형을 사용하여 대형 저수지에서 발생하는 중층밀도류의 전파 및 선택취수시설을 이용한 밀도류의 차단과 방류에 대해 수치모의하는 것이다. 이를 위하여 중층 밀도류를 수치모의하기 위한 1차원 수치모형을 제시하였으며 소양강댐 상류 소양호에 적용하여 적용성을 검토하고 밀도류의 전파 및 방류에 대해 분석하였다.

  • PDF

The Petrov-Galerkin Natural Element Method : I. Concepts (페트로프-갤러킨 자연요소법 : I. 개념)

  • Cho, Jin-Rae;Lee , Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • In this paper, a new meshfree technique which improves the numerical integration accuracy is introduced. This new method called thc Petrov-Galerkin natural clement method(PG-NEM) by authors is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used lot conventional natural clement method called the Bubnov-Galerkin natural element method(BG-NEM). But, unlike the BG-NEM, the test basis function is differently chosen, based on the concept of Petrov-Galerkin, such that its support coincides exactly with a regular integration region in background mesh. Therefore, it is expected that the proposed technique ensures the remarkably improved numerical integration accuracy in comparison with the BG-NEM.

Prediction of Probabilistic Distribution of a Loudspeaker's Performance Due to Manufacturing Tolerances by Performance Moment Integration Method (성능 모멘트 적분법을 이용한 제작공차에 의해 발생하는 스피커 성능함수의 확률분포 특성 예측)

  • Kang, Byung-su;Back, Jong Hyun;Kim, Dong-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.81-85
    • /
    • 2016
  • This paper introduces a performance integration method to predict variation characteristic of a performance function of electromagnetic machines or devices due to manufacturing tolerances. A normalized performance function space and a hybrid mean value technique are adapted to effectively predict mean and variance, which can identify probabilistic distribution of the performance function. To verify the effectiveness and accuracy of the proposed method, a mathematical problem and a loudspeaker model are tested, and numerical results are compared with those of existing methods such as Monte Carlo simulation and univariate dimension reduction method.

Numerical modelling of reflective waves on counter current (흐름상 천해 반사파의 수치해석)

  • 유동훈;김숭경;이석우
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.1-5
    • /
    • 1991
  • 1572년도에 발표된 두 수치모형 중 하나인 쌍곡형모형은 조석수치모형에 사용되는 수심적분된 두 방정식 (연속방정식과 운동량보존식)과 유사한 형태의 기본식을 사용하는데, 최초에 Ito and Tanimoto (1972)가 발표한 수식을 파의 군속도가 파속에 일치하지 않는 해역에서 오차가 발생한다.(중략)

  • PDF

3차원 연안해수유동 수치모형의 개발

  • 정태성;이길성
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.166-174
    • /
    • 1993
  • 본 연구에서는 자유수면과 성층효과를 고려한 3차원 연안해수유동 수치모형을 개발하였다. 수치모형은 수심방향에 대해서 정규화된 좌표(c-coordinate)를 사용하며, 시간적분방법으로는 반음해법(semi-implicit)을 사용하여 계산시간의 효율성을 도모하였으며, 모드분리개념을 도입하여 내역항(Internal mode)에 대해서는 양해법을 사용하였으며, 외역항(External mode)은 수평방향 운동방정식과 연속방정식의 차분식으로부터 얻은 Poisson형태의 타도형 차분방정식을 Point-SOR법에 의하여 해석하였다. (중략)

  • PDF

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.