• Title/Summary/Keyword: 수치 적분

Search Result 753, Processing Time 0.022 seconds

Numerical Model of Circulation due to Sudden Variation of Flow Section (흐름 단면(斷面)의 급변화(急變化)에 의한 순환(循環)의 수치모형(數値模型))

  • Suh, Seung Won;Park, Jung Eng;Yoon, Tae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.21-31
    • /
    • 1983
  • Circulation phenamena in open channel with abrupt variation in flow section are studied by solving numerically two dimensional Navier-Stokes equations integrated over depth. Galerkin type finite element method is used as numerical scheme. Numerical results by both implicit and explicit schemes tested in one-demensional rectangular channel agree closely with the known solution. The numerical experiments carded out in the open channel with a pool indicate the expected flow pattern and the center of the circulation coincides with the geometrical center, but the vectors of velocity appear father small, and it remains to be further investigated. Numerically simulated flow profiles along the channel with constrictions such as bridge piers and abutments are shown to be close to hydraulic experimental results. Thus further refined numerical technique is expected to be able to serve as a tool to evaluate the effect of bridge backwater.

  • PDF

A Numerical Analysis on the solution of Poisson Equation by Direct Method (직접법을 이용한 Poisson 방정식 수치해법에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.62-71
    • /
    • 1995
  • In the numerical analysis of incompressible unsteady Navier-stokes equation, large time is required for solving the pressure Poisson equation of the elliptic type at each time step. In this paper, a numerical analysis by the direct method is carried out to solve the pressure Poisson equation and the computing time is analyzed as mesh size increases. The pressure Poisson equation can be transformed to the boundary value problem by the Green theorem. The computing time for the convolution type of the domain integral can be reduced by using F.F.T. and the computing time in the direct method depends entirely on obtaining the solution of the boundary value problem. The numerical analysis on the known solutions is carried out and compared for the verification of the direct method. And the numerical analysis on the body boundary and domain decomposition problem are carried out with the computing time less than O($n^{3}$) in the (n.n) mesh.

  • PDF

Vertical Seismic Vibration of Suspension Bridges (지진을 받는 현수교의 수직진동)

  • Choi, Jee-Hoon;Lee, Jon-Ja;Kim, Su-Bo;Lee, Yong-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.581-593
    • /
    • 2000
  • In this study, vertical dynamic analyses on the suspension bridges under seismic load are developed. Time domain analysis, random vibration analysis, and spectral analysis are formulated theoretically. The random nitration analysis is checked by numerical integration and the mathematical integration with correlation coefficient which include CQC and SRSS method in the conditions of white noise and filtered white noise. Beam, truss and frame elements are used in order to model the suspension bridge. Geometric stiffness due to dead load is considered for cable and tower.

  • PDF

A study on the Array of Circular Loop Antenna in Moving Media (차동기질내에서 위형 루우프 안테나의 배열에 관한 연구)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.6
    • /
    • pp.33-37
    • /
    • 1974
  • In this paper, the radiation characteristics for the array of a circular loop antenna is studied in moving media. The medium is assumed to be homogeneous, isotropic, and to move with a constant velocity much less than the speed of light. The integral equation for the current distribution is derived and the current functions is found by means of courier Series as a solution of the integral equation. The electric field is derived from the current on circular loop antenna and the Dyadic Green's Function in moving media. The numerical calculation of the electric field concerning to the two element antenna array,, in which one element is parasitic, is carried out. The field patterns are plotted from the computed values. As a result, the field patterns in moving media, compared with the patterns in stationary media, are found to decrease in the direction of media velocity and increase in the opposite direction, and the maximum directivity is shifted.

  • PDF

An Analytical Approach to Color Composition in Ray Tracing of Volume Data

  • Jung, Moon-Ryul;Paik, Doowon;Kim, Eunghwan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • In ray tracing of 3D volume data, the color of each pixel in the image is typically obtained by accumulating the contributions of sample points on the ray cast from the pixel point. This accumulation is most naturally represented by integration. In most methods, however, it is done by numerical summation because analytical solution to the integration are hard to find. This paper shows that a semi-analytical solution can be obtained for a typical ray tracing of volume data. Tentative conclusions about the significance and usefulness of our approach are presented based on our experiments.

  • PDF

Time-Domain Electric Field Integral Equation Solving for a Stable Solution of Electromagnetic Transient Scattering (안정된 전자파 과도 산란해를 얻기 위한 시간영역 전장 적분방정식 해석)

  • Jeong, Baek-Ho;Kim, Chae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.201-208
    • /
    • 2002
  • In this paper, we present a new formulation using time-domain electric field integral equation (TD-EFIE) to obtain transient scattering response from arbitrarily shaped three-dimensional conducting bodies. The time derivative of the magnetic vector potential is approximated with a central finite difference and the scalar potential is time averaged by dividing it into two terms. This approach with an implicit method using central difference results in accurate and more stable transient scattering responses from conducting objects. Detailed mathematical steps are included and several numerical results are presented and compared with the inverse discrete Fourier transform (IDFT) of the frequency-domain solution.

Nonliear vibration analysis of polyurethane foam (폴리우레탄 폼의 비선형 진동특성 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3435-3441
    • /
    • 2014
  • A dynamic modeling and prediction of polyurethane foam material, which is used as the seat in vehicles is very important for improving the ride quality of vehicle occupants. In this study, parameters to define the nonlinear stiffness and time-variant characteristics of the viscoelasticity of polyurethane foam were obtained using a static compression test. Polynomial functions and convolution integral were used to model the nonlinear and viscoelastic characteristics of polyurethane foam mathematically. The dynamic behaviors excited by the seat floor displacement were analyzed using a numerical integration method for the nonlinear vibration model. As a result, the viscoelastic characteristics of polyurethane foam was found to be an important parameter for improving the ride quality.

Analysis of Electromagnetic Scattering from Arbitrarily Shaped Three-Dimensional Dielectric Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 유전체의 전자파 산란 해석)

  • 정백호;한상호;이화용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.27-37
    • /
    • 2002
  • In this paper, we present various combined field integral equation (CFIE) formulations for the analysis of electromagnetic scattering from arbitrarily shaped three dimensional homogeneous dielectric body in the frequency domain. For the CFIE case, we propose eight separate formulations with different combinations of testing functions that result in sixteen different formulations of CFIE by neglecting one of testing terms. One of the objectives of this paper is to illustrate that not all CFIE are valid methodologies in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results involving far scattered fields and radar cross section (RCS) are presented for a dielectric sphere to illustrate which formulation works and which do not.

Resonant Frequency in Rectangular Microstrip Patch Antenna on Anisotropic Substrates with Airgap and Permittivity Superstrate (공기갭과 유전체 덮개층을 갖는 이방성 기판 위의 마이크로스트립 패치 안테나의 공진 주파수 해석)

  • 윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1600-1606
    • /
    • 2001
  • Resonant frequency in rectangular microstrip patch antenna on anisotropic substrates with airgap and superstrate are analyzed. Dyadic Green function is derived for selected anisotropic material by constitutive relation. From these results, integral equations of electric fields are formulated using Fourier transform in space region. The electric field integral equations are discretized into the matrix form by applying Galerkin\`s moment method. Sinusoidal functions are selected as basis functions because they resemble in the actual standing wave on the patch. To verify the validity of numerical result, we compare our result with existing one and get a good agreement between them. From the numerical results, the resonant frequency in the variation of air gap, patch length and anisotropy ratio are presented and analysed.

  • PDF

Higher Order Axismmetric Boundary Element Analysis of Turbine Rotor Disk of the Small Turbojet Engine (고차 축대칭 경계 요소에 의한 소형 터보젯 엔진의 터빈 로우터 디스크 해석)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-144
    • /
    • 1998
  • The BEM for linear elastic stress analysis is applied to the highly rotating axisymmetric body problem which also involves the thermoelastic effects due to steady-state thermal conduction. The axisymmetric BEM formulation is briefly summarized and an alternative approach for transforming the volume integrals associated with such body force kernels into equivalent boundary integrals is described in a way of using the concept of inner product and vector identity. A discretization scheme for higher order BE is outlined for numerical treatment of the resulting boundary integral equations, and it is consequently illustrated by determining the stress distributions of the turbine rotor disk of the small turbojet engine(ADD 500) for which a FEM stress solution has been furnished by author.

  • PDF