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ABSTRACT

The BEM for linear elastic stress analysis is applied to the highly rotating axisymmetric body
problem which also involves the thermoelastic effects due to steady-state thermal conduction. The
axisymmetric BEM formulation is briefly summarized and an alternative approach for transforming the
volume integrals associated with such body force kernels into equivalent boundary integrals is described
in a way of using the concept of inner product and vector identity. A discretization scheme for higher
order BE is outlined for numerical treatment of the resulting boundary integral equations, and it is
consequently illustrated by determining the stress distributions of the turbine rotor disk of the small
turbojet engine(ADD 500) for which a FEM stress solution has been furnished by author.

Key Words : Higher Order Axisymmetric BEM,
Thermoelastic Kernel, Rotational Inertia Kernel,
Turbine Rotor Disk of the Small Turbojet Engine.
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1. INTRODUCTION

In a class of stress analysis problems,
axisymmetric elastic bodies are subjected to
boundary tractions and displacements as well
as thermal and centrifugal body forces. The
strength design of gas turbojet engines
involves a large number of axisymmetric
parts such as the compressor and turbine
disks. It is clear in stress analysis of such a
turbine rotor disk that inclusion of rotational
inertia body force loading and steady-state
thermoelastic effects is of major importance.

Application of the Boundary Element
Method(BEM) to thermoelastic and centrifugal
axisymmetric loading problems was first
formulated by Cruse et al™ but limited
numerical implementation to linear elements
sometimes circular arcs in shape. Further
included the use of
quadratic

developments
isoparametric elements  for
themoelastic problems(Bakr and Fenner?) and
rotating  axisymmetric  body  problems
(Abdul-Mihsein et al.”’). Numerical examples
are however confined to simple axisymmetric
geo— metries such as thick-walled cylinder,
hollow sphere, and rotating disk of uniform
thickness, and centrifugal body force and
thermal  loading treated

separately.

problems  are

The main purpose of present study is to
determine the stresses of the turbine rotor
disk of turbojet engine subjected to both
thermal and highly rotational inertia force by
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the axisymmetric BEM. While the
formulation of the method follows closely in
spirit the ideas outlined for thermoelastic
analysis by Bakr and Fenner”?  and
centrifugal loading by Abdul-Mihsein et al.”,
combination of two loadings is magnified by
numerical procedure for higher order BE.
The development of the axisymmetric BEM
is summarize in order to motivate the
subsequent numerical extension to
thermoelastic  rotating axisymmetric  body
problems and new procedure for deriving the
fundamental thermal and centrifugal body
force kernels on equivalent boundary integral
is presented in a efficient way of using the
concept of innmer product and invariant vector
Finally
solutions to the model problem of the turbine
rotor disk in small turbojet engine(ADD 500)
are presented and compared with the

operation. axisymmetric  BEM

axisymmetric FEM solutions.

2. AXISYMMETRIC BEM
FORMULATIONS

Consider an axisymmetric body of arbitrary
cross—sectional shape with an interior point p
in 2 and a boundary point Q on 08 as
shown in Fig.l. Following the analysis of the
weighted residual statements or the Betti's
reciprocal theorem, the interior displacement
solution formula can be obtained known as
the Somigliana integral for centrifugal and
thermoelastic loading(Cruse et al") which is
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given by
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where %, is the displacements, ¢, is the
tractions, @ is the temperature and x, is the

location relative to the center of rotation of g
in £. The constants are mass density p,
angular velocity
Young's modulus E and coefficient of thermal
T, and U, are the
traction and displacement kernel functions
associated with  the
fundamental
equation of equilibrium.

w, Poisson’s ratio 1,
expansion a,

three  dimensional

solutions to the Navier's

Fig. 1 Geometry of the axisymmetric
solution domain

For the axisymmetric BEM formulation two
altemative approaches have been used to
derive the kemel functions. The first(Rizzo
and Shippyw) is to integrate the three
dimensional Kelvin's solutions along the
circlar path around the axis of rotational
symmetry. The second approach is to obtain
the axisymmetric component form of Galerkin
vector directly(Kermanidis®, Cruse et al”)
and is the one used here. As described in

the second approach the complementary
displacement vector u’ associated with the
displacement kernel can be represented in
terms of Galerkin vector G as

u= v G- )VH%G) ©)

1
21—y) =
Then substitution of this expression into

the Navier's equation gives the following
biharmonic equations in radial — » and axial

— 2 direction, respectively

F,

(vi-—l)vi-—) 6, =-—

viviG, = — i (3)
7,

where ( &, , G, ) are the Galerkin vector
components, ( F, , F, ) are the funda-

mental body force components which can be
represented through the use of Dirac delta
function, and g is shear modulus. Integral
transform methods(ex. Hankel transform by
Bakr and Fenner”) can be then used to

obtain sclutions for ( G, , G, ) from

Eq.(3) and the results are given in terms of
Legendre functions of the second kind

-1
G,=V (Rr\V ( 72——1)—%%&

-1
Gz=¢(Rﬂ¢(7ﬂ—1yi%§5%%2<@

[ (Z=2)*+ (R— 7 7]
2Ry

Y=1+
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where (R, 7) represent the coordinate
components of load point p and (r, 2)
represent the field point q in £2. The
displacement
determined by substitution of Eq.(4) into the
relations

kernels U, are then

3?2 G,
=(1-20( v =—15) 6+ 55
21—y U,
__ G, (1,06,
07 0z v 02
9% G,
20— U,, = ~ T ar oz (5)

2(1_)/) Uzz=(1_21/) v 2 Gz

92 G,
2

1,96,
or +(7’) or

+
Now the volume integrals of last two
terms in Eq.(1) limits the potential benefits of

BEM formulation.
volume integrals to equivalent boundary

In order to reduce the

integrals in Eq.(1) it is convenient to use the
concept of inner product of body force and
fundamental displacement. The first volume
integral in Eq.(1) associated with the body
force vector for rotational inertia loading has
the following inner product of body force b
and fundamental displacement u"

<b,u > = .Oa)sz(x - u ) dV

EE/’“ | 28

=p wzfQ[VZG— Tlll—lj v(v-@]-xdV (6)
Substitution of the following vector identity

(VG = VG + yX(¥xX@ 7

and Green theorem for volume integrals to
surface integrals

fgx-[ T X(VXG)] dV

= faQX'(nXVXG)dS
fx-VZGdV (8)
2

—f (TG - G(Vx) )+ ndS

- fg[x-VX(VXG)] dv

Eq.(6) can be then directed to the equivalent
boundary integral

Pa)zfx-u*dv =
w?-Ll=2v IPUNINeS
2(1—2/) [X(-Y'G G(v x))] ﬁa’S

- ow f (nxvxG)ds @
In order to reduce the second volume

integral in Eq.(1) consider thermal body force
and boundary traction of heat flux

b=————“E v(Dt

-2 Y (Dn 10)

(1 2)
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Then application of two inner product of
above thermoelastic effects and fundamental
displacement < b, u Do . <t,u >so
to the Betti's reciprocal theorem being the
basis for derivation of Somigliana identity
yields an equivalent representation to the
second volume integral in terms of invarient
vector form as

W[@vmw— (1)

—(l-z—y)fa)v[v?cr ( 2Ty VYol dV

Use of the vector identity such as ¥ + (V3Q)
= v %v -G and condition of steady-state
vig =0 i &
Proceeding the same argument to Green
theorem, Eq.(11) can be finally reduced to the
following boundary integral equation

heat conduction

ak
(1—21/)

3 Sl 09V -GV -GV 0] ndS

@(v -u*) dv = (12)

2(1

These two transformed Eqgs.(9) and (12)
can be utilized to construct the corresponding
boundary  integral  formula  for  the
displacement.

Reduction of Somigliana identity of Eq.(1)
to the boundary integral representation is
accomplished by taking the limit of each term
as the interior point p approaches a boundary

point P. The resulting integral equations for

the boundary displacement can be expressed
as

Cy(P) uy(P)= [ [ Us(P,Q) t,(Q)

- Tij(P,Q) uj(Q)+0’ Vij(P,Q) d)j(Q)

+ow® Wi(P,Q]ldS (13)

where the subscripts 2z and ; range over

@, normal
The thermal

V, and rotational inertia
W, are defined from Eqs.(12)

7 and 2z except temperature
derivative of @,=V 0+ 7 .
loading kernels
force kernels

and (9), respectively. The coefficients C,

can be evaluated in the limiting process used
in deriving boundary integral equation. This
procedure is described in detail by Cruse et
al"” and Hartmann”.

3. NUMERICAL TREATMENT
AND RESULTS

The boundary contour o 2 of the typical
f-plane in axisymmetric body is divided into
elements and the integration of Eq.(13)
performed over each element. The
coordinates of any point on the element can
be expressed in terms of the usual quadratic

interpolation functions as

nE = Nj(&r,; 28 = N, (&8 z,

where
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(15)
t, (=Nt ; t.(O=N(Ht,

Ny (O=751+9-7 (- ) 4

The descretization of the boundary integral

Ny(® = (1— &%) equation of (13) can consequently yields in
axisymmetric form

Similarly the displacement and traction can where M is the total number of elements,

be also represented as and J{ &) is the Jacobian of transformation.

Cr(P) u,(P)+ Cr(P) u.(P) =

+o0 J——Z”lfl W, (P, Q&)

— 0, Q[ T.(P.Q&)
~ 0 M@ [ T (P Qe
+ 6, 0Q [ UL s
+ 100 [ UL(P )
+o ’”(Q)fﬂ V. (P, Q)

40 Q) [TV (P )

N, ()OI dE (16)

2(1
tow [ Wu(P,Q&)

Czr(P) ur(P)+ sz(P) uz(P) =

L

- w0 TP ) |

— 0 Q[ TP &)
+ tr,,m)f_1 U.,(P,Q8)
+ LM [ UL(P.&)
+ 0 ’”(Q)fH Va (P QO)

2 Q[ VAP |

N, (§)HEJ&)dE (17)
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u,, denotes the radial displacement

component of # node in the wmu element.
Each node on the boundary is taken in tumn
as the load point and the indicated numerical
integration performed (ex. Gaussian
quadrature) over the entire boundary, leading
to a set of linear algebraic equations which

can be finally given by

[H{w}=[GH{&+[ V &} +][ Vﬂ{%}

Fo o LA Wltowll W) (9

Matrices [ H'] and [ G ] contain the
integrals of traction and displacement kernels,
[ Vil and [ V,l
mvolve the integrals of thermoelastic kernels
defined from Eq(12), and [ W;] and
[ W,] contain the integrals of the rotational

body force kemels from FEq.(9). Before
solving

respectively, while

Eq.(18), the boundary conditions are applied.
These take the form of either prescribed
displacement or tractions over each element.
The equation can be rearranged such that all
the unknown displacements and tractions are
on the left hand side and all the known
quantities including centrifugal and thermal
loading terms are on the right and reduced
the final stiffness equation as

[Al{x} = {y} (19)

The stiffness [ A ] is in general fully
populated with non-zero coefficients, and is
not symmetric. The equation are best solved
by  direct
Gauss-Jordan technique.

elimination ~ procedure  like

Fig.2 shows the turbine rotor disk of an
actual part of small turbojet engine
structure(ADD 500) and for the present BEM
analysis it 1s replaced by the three
dimensional CAD configuration as shown in
Fig.3. Due to symmetry only half the disk is
modelled with 46 quadratic elements and 92
nodal points as shown in Fig.4.

The same disk is analyzed using the FEM
with 104 quadrilateral elements and 135 nodal
points as also shown in Fig5 The material
properties and loading data are as follows ;

Young’s modulus, E 1972 GPa
Poisson’s ratio = 0.3

mass density = 8000 kg/m’
rim loading = 4729 MPa
angular velocity, @ = 424115 rad/s

Coefficient of thermal expansion

= 988x10°m/m °C
300 °C
temperature at outer surface, T, = 900 °C

temperature at inner surface, Ty =

The temperature distribution is prerequisite
for such a boundary value problem. This
can be obtained from an independent routine
equation  of

by solving the Laplace

steady-syate heat conduction.
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Table 1. Comparison of BEM and FEM solution for the hoop stress in the

turbine rotor disk

Radius Temperature | Temp. Gradient BEM Sol. FEM Sol.
Rx10 ox 102 d®/ dnx10 g% 10° gex 107
( mm) (°C) ( °C/ mm ) (MPa) (MPa)
0.749 3.000 -1.676 9.584 -
0.940 3.292 0.0 7.936 8.550
1.295 3.711 0.0 5.764 6.371
1.422 4.037 0.0 4,751 4992
2.007 3.213 0.0 4.206 4.399
2.362 4.562 0.0 3.882 4.109
2.692 4,784 0.0 3.696 3.896
3.073 5.040 0.0 3.509 3.647
3.581 5.390 0.0 3.254 3.482
4.013 5.699 0.0 2.965 3.185
4.394 5976 0.0 2.641 2.675
4.750 6.232 0.0 2.468 2.324
5.080 6.465 0.0 2.144 1.931
5.385 6.671 0.0 1.779 1.627
5.690 6.862 0.0 1.393 1.317
6.020 7.052 0.0 1.041 0.965
6.350 7.236 0.0 0.896 0.820
6.655 7.416 0.0 0.800 0.958
6.934 7.601 0.0 0.669 0.869
7.163 7771 0.0 0.469 0.607
8.052 8.545 0.0 -0.820 -0.586
8.306 8.760 0.0 -1.538 -1.558
8.463 8.876 0.0 -2.103 -2.310
8.651 9.000 0.632 -3.199 -
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Fig2 The turbine rotor disk of small
turbojet engine

Fig.3 3-D Configuration of the turbine rotor
disk

Fig4 BEM meshes for the turbine rotor
disk

Fig5 FEM meshes for the turbine rotor
disk

Table 1 shows the results of the BEM and
FEM hoop stress solutions together with the
corresponding temperature distribution, and
Fig6 depicts the comparison of these two
stress distributions. Turbine disk is usually
made thicker near its hub and taper down to
a smaller thickness towards the periphery.
The reason for this is the hoop stress
concentration near center of rotation as
clearly illustrated in Fig. 6. The BEM
results of the radial stress distribution are
also compared with the FEM one in Fig. 7.
The close agreement between the BEM and
FEM results confirms the accuracy of both
model.

Fig6 Hoop stress distributions in the
turbine rotor disk

Fig.7 Radial stress distributions in the
turbine rotor disk

4. CONCLUSIONS

The present study is an application of the
BEM to the stress analysis problem for

which axisymmetric body is subjected to
thermal loading and highly rotational inertia
body forces. An extension of the
axisymmetric BEM formulation has been
demonstrated to construct such  Kkernel
functions over equivalent boundary integrals.
A discretization scheme is outlined for
numerical treatment of the resulting boundary
integral equations, and it is finally illustrated
by solving the model problem of the turbine
rotor disk for which a FEM solution has
been furnished by author.

In order to achieve strength design for
turbojet engine structure, further development
of the BEM involves the capability to model
transient thermal loading including thermal-
dependent material properties.
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Fig.1 Geometry of the axisymmetric solution domain
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Fig.2 The turbine rotor disk of small turbojet engine
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