• Title/Summary/Keyword: 수치지질도 및 수치지형도

Search Result 26, Processing Time 0.024 seconds

Areal Distribution Ratio and Characteristics of Constituent Rocks with Geologic Age and Rock Type by GIS in Gyeongnam-Ulsan-Busan Areas (GIS를 이용한 경남-울산-부산지역 구성암류의 지질시대별 및 암층별 분포율과 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • To get the geologic information data such as rock resources, industrial ground, development planning and so on, distribution ratios of constituent rocks with geologic age and rock type were obtained in Gyeongnam, Ulsan and Busan areas by ArcGIS 9.3 program, digital geologic and geomorphic maps of 1 : 250,000 scale. Geologic ages and rock types in the Gyeongnam area can be divided into 6 and 40, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Precambrian, Quaternary, Jurassic, Triassic and Tertiary. They show the wide ranges of 1.35-57.36%, and the former makes the most dominant ratio. Major rock types are 24 ones, all of which occupy the ratio of 94.58% and relatively narrow ranges of 1.15-13.64% in the area. Among them, andesite and andesitic tuff shows the more or less dominant ratio, and separately develops in the northeast, mid east and south parts of the area. In the Ulsan area, geologic ages and rock types can be divided into 3 and II, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Triassic. They show the very wide range of 6.90-79.21%, and the former makes the most prevailing ratio. Major rock types are 9 ones, which totally occupy the ratio of 98.63% and more or less wide ranges of 1.50-39.01% in the area. Among them, Jindong formation shows the most dominant ratio, and widely develops in the inner and eastern part of the area. In the Busan area, geologic ages and rock types can be divided into 3 and 10, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Tertiary. They show the wide ranges of 6.73-47.02%, and the two former makes the most dominant ratio of 88.03%. Major rock types are 6 ones, all of which occupy the ratio of 93.02% and relatively wide ranges of 4.07-47.02% in the area. Among them, alluvium forms the most dominant ratio, which mostly develops in the lower Nagdong River, West Nagdong River and Suyeong River.

The Research on the Management Plan of Geological Heritage in Korea using GIS (지리정보를 활용한 한국의 지질유산 정보화 구축 및 관리방안 제시)

  • Lee, SooJae;Lee, MoungJin
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.103-123
    • /
    • 2015
  • To provide effective management policy of geo-heritages, concept of Korean geo-heritage has been organized based on geo-diversity, geo-conservation, geo-tourism, and earth-heritage. In addition, current status of geo-heritage in Korea has been grasped, and categorized. In case GPS (Global Positioning System) coordinates exist, spatial information was constructed as GIS (Geographic Information System). Geo-heritages were classified into a total of six categories of natural monument, scenic site, coastal sand-dune, natural cave, world nature heritage, and other types of geo-heritage. By mapping 991 geo-heritages scattered nationwide using geographical information, all statuses can now be readily identified and enable the analysis of the distribution tendencies and correlation with topography. This study was aimed at searching the political connection based on quantitatively organized and analyzed geo-heritages, which have not been mapped thus far. In addition, this study organized data that have existed only in literature, and presented example verification. Moreover, these can be used as guidelines for the future search, discovery, registration and management of geo-heritage. If additional geo-heritages are discovered in field studies or with satellite images, then more correlations may be identified and help facilitate the research on geo-heritages management plans.

  • PDF

Utilizing GSIS and High Resolution Satellite Imagery for Landform Analysis and Sight-Seeing Guidance (금오산 도립공원의 지형분석과 관광안내를 위한 GSIS와 고해상도 위성영상의 활용)

  • Lee, Jin-Duk;Choi, Young-Geun;Lee, Ho-Chan
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.156-161
    • /
    • 2002
  • 자연공원의 체계적인 관리를 위해서는 효율적인 자료수집과 처리, 그리고 합리적인 분석과정이 필요하며, 이러한 관점에서 지형공간정보체계와 위성원격탐사를 이용하는 공원관리 및 관광안내시스템의 개발이 요구되는 시점이다. 본 연구에서는 금오산 도립공원구역을 사례연구지역으로 GSIS(Geo-Spatial Information System)기법을 도입하여 수치지형도, 주제도, 위성영상 등으로부터 도형자료 및 비도형자료를 수집 처리하였다. DEM 생성을 통하여 얻어진 경사도, 사면방향, 지형단면, 지질 분석 등 주제별 지형분석을 행하였다. Landsat TM 위성자료로부터 토지피복분류와 NDVI 식생활력도를 추출하였고, 이 자료들로부터 GSIS 데이터베이스를 구축하였다. 또한 대상지역을 포함하는 Im 해상도의 IKONOS 위성자료를 처리하여 영상지도를 작성하고 DEM과 중합하여 3D 시각화를 구현하였다. 위성영상지도 및 3차원 경관도상에 주요 등산로 벡터자료를 중첩하여 표현하고, 5개 루트의 주요 등산로를 따라 3D 경관 및 문화재, 관리시설 등을 포함하는 동영상 파일을 제작하였다. 본 연구의 결과는 개발과 보존의 중도를 취하는 자연공원의 적정 토지이용을 위한 사전평가 자료 및 Web 기반 관광안내시스템을 구축하기 위한 기본데이터로 활용될 수 있을 것이다.

  • PDF

Development of Learning Place for Geologic Field Survey around the Duta Mountain, Chungbuk, Korea (충북 괴산군 두타산 일대의 야외지질조사 학습장 개발)

  • Lee, Chang-Xin;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2005
  • The purpose of the study is to develop a educational data in order for students to perform geologic field survey effectively by themselves. A area around the Duta Mountain is selected. which is located at the southeastern part of Eumsung sedimentary basin because various rock types and geologic structures are well shown in this area and also it is convenient to reach there. Thirteen stops for observation are chosen m a route f3r exercising field geologic investigation. Data for field research are given and described in detail from each stop for observation. To do this, students make their own route map using general or digital geographic map and aerial photo is added to know relationship between large-scale structure and different rock types regionally. Moreover, it is designed to minimize conflict factors that may be experienced from the real field survey by showing outcrop photographs and polarizing photomicrographs of rut samples related to each stop and geologic structures. The attitude of students is investigated with the data of field geologic survey for students of an Earth Science class in the College of Education in Chungbuk National University. The results indicate that the educational data for geologic field survey brought positive changes that greatly help students perform field survey in definitive side, especially formation of absolute concepts on earth science.

Study on the Geographic and Geologic Centers in South Korea Using GIS (GIS를 이용한 남한의 지리 및 지질 중심에 관한 연구)

  • Cheong, Won-Seok;Hwang, Jae-Hong;Kang, Yong-Sock;Na, Ki-Chang
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.416-424
    • /
    • 2006
  • Because there is no generally accepted definition of a geographic center and no completely satisfactory method to determine one, there may be as many geographic centers of a country as there are many definitions. The geographic center of an area may be defined as the center of gravity on a surface, or that point on which the surface of an area would balance if it were a plane of uniform thickness. This research uses geographic information system (GIS) analysis and there are places where it defines the geographical and the geological centers in the inland of South Korea. To compute the geo-centers in South Korea: 1) firstly, we collected existing reaserch data related to digital map data. 2)Secondly, we analyzed a geological center and data collection examples of Korea and other nations-the Europe and America. 3) Thirdly, we carried out numerous processes to build a geodatabase, short for geograhic database, so that GIS analysis and the constructed geodatabase is covered within the inland in South Korea. Where geodatabase is a kind of spatial database. 4) Fourthly, in order to determine the geographical center, we supposed that the condition of continental surface is the plane of homogeneous or irregular density. 5) Consequently, we chose a few resonable conditions and produced a variety of geographical centers that is geometric and gravitational in South Korea. As a result of the analysis, center points are massed to southern part of Chungbuk province, Korea.

3D Modeling Approaches in Estimation of Resource and Production of Musan Iron Mine, North Korea (3차원 모델링을 활용한 북한 무산광산일대의 자원량 및 생산량 추정)

  • Bae, Sungji;Yu, Jaehyung;Koh, Sang-Mo;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.391-400
    • /
    • 2015
  • Korea is a global steel producer and a major consumer while iron ore producing is very low compared to the demand. On the other hand, North Korea holds tremendous amount of iron reserves and, however, its producing rate is limited. Moreover, the data regarding mineral resources of North Korea is very limited and uncertain because of political isolation. This study estimated the amount of iron ore resource and production amount for the Musan Iron mine, the world-known open-pit mine of North Korea, using satellite imagery(Landsat MSS, ASTER) and digital maps between 1976 to 2007. As a result, the mining area of Musan mine was increased by $6.1km^2$ during the 30 years and the mining sector was estimated as $4.9km^2$. We estimated the iron resources and production amount of 0.7 and 0.2 billion metric tons, respectively based on 3D modeling and average iron ore density of Anshan formation in China. This amount indicates 8.1 million tons of annual average production and it coincides well with previous reports. We expect this study would be utilized significantly on inter-Korean exchange programs by providing trustable preliminary data.

Improvement of Hydrologic Flood Forecasting Model for Flood Forecasting System in the Sapgyocheon (삽교천홍수예보시스템의 수문학적 홍수예측모형 개선)

  • Yeo, Kyu-Dong;Song, Jae-Hyun;Yoon, Kwang-Seok;HwangBo, Jong-Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.345-349
    • /
    • 2007
  • 삽교천 홍수예보시스템은 1999년에 개발되어 현재까지 운영되고 있으나, 개발 이후 유역특성의 변화를 반영한 모형 개선이 이루어지지 않았고, 삽교천 하구둑의 영향을 고려한 모형은 개발되어 있지 않은 실정이다. 이 지역 중에서 특히 천안/아산지역은 급격한 인구증가와 산업화 및 도시화에 의해 면적당 자산의 고도화가 증가하며, 이에 따라 홍수시 피해잠재능은 점점 증가하고 있는 상황이다. 홍수예보 정확도 향상을 위하여 삽교천 유역내 수위관측소 증설에 따른 소유역을 재분할하여 유역특성변화에 따른 수문학적 모형을 재구축하였다. 따라서, 삽교천유역에 신설 및 T/M화된 수문관측소에 대한 소유역 분할과 저류함수법을 이용하기 위한 저류상수를 산정하기위해 기존의 일반 종이지도로 제작된 지형도(1:50,000), 녹지자연도, 지질도, 개략토양도 등을 이용하는 대신 수치지도를 이용하여 저류상수를 산정하였다. 변화된 유역 조건을 가지고 삽교천 유역의 전체 유역 및 하도유출계산을 수행한 후, 측정 결과가 있는 지점의 수문곡선과 비교하여 모형상수가 적절히 산정되었는지 검토하고, 개선된 모형상수를 제시하였다. 또한 홍수예보지점인 원평지점의 선행예보시간을 확보하기 위하여 원평지점 상류의 예당저수지 방류량과 원평지점 수위간의 통계학적모형을 구축하였고, 2시간 이상의 선행예보시간을 확보하였다.

  • PDF

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.

Case Study on the Hazard Susceptibility Prediction of Debris Flows using Surface Water Concentration Analysis and the Distinct Element Method (수계 집중도 분석 및 개별요소법을 이용한 토석류 위험도 예측 사례 연구)

  • Lee, Jong-Hyun;Kim, Seung-Hyun;Ryu, Sang-Hoon;Koo, Ho-Bon;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Various studies regarding the prediction of landslides are underway internationally. Research into disaster prevention with regard to debris flows is a particular focus of research because this type of landslide can cause enormous damage over a short period. The objective of this study is to determine the hazard susceptibility of debris flow via predictions of surface water concentrations based on the concept that a debris flow is similar to a surface water flow, as it is influenced by mountain topography. This study considered urban areas affected by large debris flows or landslides. Digital mapping (including the slope and upslope contributing areas) and the wetness index were used to determine the relevant topographic factors and the hydrology of the area. We determined the hazard susceptibility of debris flow by predicting the surface water concentration based on the topography of the surrounding mountainous terrain. Results obtained using the distinct element method were used to derive a correlation equation between the weight and the impact force of the debris flow. We consider that in using a correlation equation, this method could assist in the effective installation of debris-flow-prevention structures.

Areal Distribution Ratio of Rock ffes with Geologic Ages in the Gyeonggi-Seoul-Incheon Areas (경기-서울-인천지역 구성암류의 지질시대별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.208-216
    • /
    • 2007
  • Based on digital geologic and geomorphic maps of 1 : 250,000 scale, distributive ratios of rock types were obtained by ArcGIS 9.0 program in the Gyeonggi, Seoul and Incheon areas of the Gyeonggi province. In the Gyeonggi area, 37 rock types are developed, and their geologic ages can be classified into Precambrian, Age-unknown, Triassic, Jurassic, Cretaceous and Quatemary. Among them, distributive ratios are decreasing in the order of Jurassic Daebo granites, Precambrian banded gneiss of Gyeonggi gneiss complex and Quatemary alluvium, all of which comprise about 83.7% of the rock types in the area. In the Seoul and Incheon areas, 10 and 15 rock types are developed, respectively., with the firmer being classified into Precambrian, Jurassic and Quatemary, and the latter into Precambrian, Jurassic, Cretaceous and Quatemary. In the Seoul area, distributive ratios are decreasing in the order of banded gneiss of Gyeonggi gneiss complex, Daebo granites and alluvium, which consist of 95.5% of the rocks in the area. In the Incheon area, distributive ratios are decreasing in the order of alluvium, Daebo granites, banded gneiss of Gyeonggi gneiss complex, reclaimed land, and schists of Gyeonggi gneiss complex, which occupy about 96.2% of the rocks in the area. The ratio of alluvium in the Incheon area is greater than that of Gyeonggi and Seoul areas, and the ratio of reclaimed land in the Incheon area is greater that of the Seoul, which can be attributed to the recent reclamation of the land for the industrial results such as new town development along the coastline of the Gyeonggi Bay.