• Title/Summary/Keyword: 수치적 좌굴

Search Result 94, Processing Time 0.025 seconds

A Development of Numerical Method for Bifurcational Bucklingof the Spatial Structures (공간구조물의 분기좌굴해석이론의 개발)

  • Lee, Kyung-Soo;Han, Sang-Eul;Lee, Jae-Young;Kim, Man-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.496-499
    • /
    • 2009
  • 본 논문은 기하학적 비선형성을 가진 보존적 단일 하중 매개변수의 탄성 상태 공간구조의 분기이론에 관한 수치 해석적 기본 방법 및 경로 추적, pin-pointing, 경로 전환을 기술하고 있다. 비선형 탄성 불안정 상태는 극한점과 분기점으로 분류될 수 있으며, 평형경로상의 평형점의 계산 및 평형경로상의 특이점을 찾기 위한 pin-pointing 반복계산을 수행하는 일반적인 비선형 수치해석법으로 극한점을 계산할 수 있다. 그러나 분기좌굴 해석을 위해서는 좌굴 후 분기경로의 추적을 위한 분기경로 전환 알고리즘이 추가적으로 필요하다. 본문에서는 에너지이론에 기초한 일반 탄성안정이론을 소개하고, 평형경로 추적, 분기 좌굴점을 찾기 위한 직접법과 분기경로 전환에 관한 이론을 전개한다. 분기좌굴 해석예제로 트러스로 이루어진 스타돔, 핀지지의 평면아치, 평면프레임, 3차원 공간프레임의 분기좌굴 해석을 수행하여 본문에서 제시한 수치해석법의 정확성 및 실용성을 검증한다.

  • PDF

Numerical Analyses of Critical Buckling Loads and Modes of Anisotropic Laminated Composite Plates (비등방성 복합 적층판의 임계좌굴하중 및 모드의 수치 해석)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.451-461
    • /
    • 1998
  • The solution of anisotropic plate via the classical methods is limited to relatively load and boundary conditions. If these conditions are more complex, the analysis becomes increasingly tedious and even impossible. For many plate problems of considerable practical interest, analytic solutions to the governing differential equations cannot be found. Among the numerical techniques presently available, the finite difference method and the finite element method are powerful numerical methods. The objective of this paper is to compare with each numerical methods for the buckling load and modes of anisotropic composite laminated plates considering shear deformation. In applying numerical methods to solve differential equations of anisotropic plates, this study uses the finite difference method and the finite element method. In determining the eigenvalue by Finite Difference Method, this paper represent good convergence compared with Finite Element Method. Several numerical examples and buckling modes show the effectiveness of various numerical methods and they will give a guides in deciding minimum buckling load and various mode shapes.

  • PDF

Buckling Loads of Column with Constant Surface Area (일정표면적 기둥의 좌굴하중)

  • Lee, Byoung Koo;Park, Kwang Kyou;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.1-7
    • /
    • 2011
  • This paper deals with buckling loads of the column with the constant surface area. The shape function of variable column depth is chosen as the linear taper. The ordinary differential equation governing buckled shapes of the column is derived based on the dynamic equilibrium equation of such column subjected to an axial load. Three kinds of end constraint of hinged-hinged, hinged-clamped and clamped-clamped are considered in numerical examples. Effects of the column parameters on buckling loads are extensively discussed. Especially, section ratios of the strongest column are calculated, under which the maximum, i.e. strongest, buckling loads are achieved. Also the buckled shapes are obtained for searching the nodal points where the inner transverse supports are simply installed to increase the buckling loads.

A Development of Analytical Strategies for Elastic Bifurcation Buckling of the Spatial Structures (공간구조물의 탄성 분기좌굴해석을 위한 수치해석 이론 개발)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.563-574
    • /
    • 2009
  • This paper briefly describes the fundamental strategies--path-tracing, pin-pointing, and path-switching--in the computational elastic bifurcation theory of geometrically non-linear single-load-parameter conservative elastic spatial structures. The stability points in the non-linear elasticity may be classified into limit points and bifurcation points. For the limit points, the path tracing scheme that successively computes the regular equilibrium points on the equilibrium path, and the pinpointing scheme that precisely locates the singular equilibrium points were sufficient for the computational stability analysis. For the bifurcation points, however, a specific procedure for path-switching was also necessary to detect the branching paths to be traced in the post-buckling region. After the introduction, a general theory of elastic stability based on the energy concept was given. Then path tracing, an indirect method of detecting multiple bifurcation points, and path switching strategies were described. Next, some numerical examples of bifurcation analysis were carried out for a trussed stardome, and a pin-supported plane circular arch was described. Finally, concluding remarks were given.

Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members (냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석)

  • Kang, Hyun Koo;Rha, Chang Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper presents modelling approaches for the global and distortional buckling of cold-formed built-up steel sections using the finite element software packages, ANSYS and ABAQUS. Thin thickness of the cold-formed steel causes nonlinear behaviour due to local and distortional buckling, thus careful consideration is required in modelling for numerical analysis. Implicit static modelling using ANSYS provides unstable numerical results as the load approaches the limit point but explicit dyamic modelling with ABAQUS is able to display the behaviour even in post-buckling range. Meanwhile, axial load capacities obtained from the numerical analysis show higher values than the experimental axial capacities, due to eccentricity during the test. Axial capacities of the cold-formed steel obtained through numerical analysis requires reduction factor, and this paper suggests 0.88 for the factor.

A Study on the Nonlinear Instability Behavior of Hybrid Structures(II) -Characteristic of Dynamic In-Plane Torsional Buckling under the STEP Load- (Hybrid 구조물의 비선형 불안정 거동에 관한 연구(II) -STEP 하중에서의 동적 면내비틀림 좌굴 특성-)

  • Kim, Seung Deog;Kim, Hyung Seok;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.599-608
    • /
    • 2001
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load has been published but there have been few papers related to the dynamic instability of hybrid cable domes. And also there are a few researches which treat the essential phenomenon of the dynamic buckling using the phase for investigating occurrence of chaos. In this study the indirect buckling of hybrid cable domes considering geometric nonlinearity are investigated numerically and compared it with the static critical load The dynamic critical loads are determined by the numerical integration of the geometric nonlinear equation of motion and the mechanism of the indirect buckling is examined by using the phase curves.

  • PDF

안정적 좌굴 모델을 통한 저감쇠 직물 시뮬레이션

  • Choe, Gwang-Jin;Go, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • We present a cloth simulation technique that is very stable yet also responsive. The stability of the technique allows the use of a large fixed time step when simulating various types of fabrics and character motions. The animations generated using this technique are strikingly realistic. Wrinkles form and disappear in a quite natural way, which is the feature that most distinguishes textile fabrics from other sheet materials. Significant improvements in both the stability and realism were made possible by overcoming the post-buckling instability as well as the numerical instability. The instability caused by buckling arises from a structural instability and therefore cannot be avoided by simply employing an implicit method. Addition of a damping force may help to avoid instabilities; however, it can significantly degrade the realism of the cloth motion. In this paper, a new buckling model based on immediate buckling assumption is proposed. A cloth element is assumed to reach a stable configuration immediately once it begins to buckle. This assumption makes it possible to simulate the fabric buckling stably without introducing any fictitious damping force. Consequently, it produces highly responsive cloth motion as well as improves the stability by modeling the fabric-specific buckling property adequately.

  • PDF

Evaluation and Test of Slenderness Ratio Effect on Buckling Characteristics of Thin Cylindrical Structures Subjecting the Shear Loads (전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성 평가 및 시험)

  • 구경회;김종범;이재한
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.535-543
    • /
    • 2002
  • The purpose of this paper is to investigate the slenderness ratio effect on buckling characteristics of thin cylindrical structures subjecting the shear loads in detail. To do this, the buckling strength evaluations were carried out with using the evaluation formulae proposed by J. Okada. From the results of the buckling strength evaluations, the three types of staled cylindrical test specimen, which have L/R=3.1, 1.6, and 1.0, are determined for the numerical analyses and tests. From results, target slenderness ratio over L/R=3 results in dominant bending buckling mode, smaller slenderness ratio under L/R=1 results in dominant shear buckling mode, and near L/R=1.6 region shows the mixed buckling mode which has the bending and shear buckling mode simultaneously. Most results of buckling characteristics obtained by the numerical analyses and the evaluation formulae we in good agreement with those of tests.

The Korea Academia-Industrial cooperation Society (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 전체좌굴강도 근사해 유도 및 해석적 검증 방안)

  • Choi, Byung-Ho;Park, Sang-Kyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.600-602
    • /
    • 2012
  • 폐단면리브 적용 판의 면내 압축좌굴 거동 특성 중에서 보강재 강성이 작고 비교적 낮은 임계하중을 받는 경우 전체기둥좌굴 거동이 예상된다. 본 논문은 폐단면리브 단면 강성의 고려 방안에 따라 단순 보 유사모형을 정립하고 전체좌굴에 대해 에너지 근사해법을 적용하여 전체좌굴강도 근사해를 유도하기 위한 기초적인 연구방안으로써 검토한 내용을 소개하고자 한다. 유사모형의 폐단면리브 중심에서 휨강성이 발휘되는 것으로 가정하여 모형화 하였다. 폐단면리브 보강판의 프로토타입 모델에 대해 직교이방성 $[(0^{\circ})_4]_s$와 Cross-ply $[(0^{\circ}/90^{\circ})_2]_s$ 적층단면을 각각 고려한 유한요소 해석을 실시하였다. U리브 단면강성에 따른 복합적층 보강판의 탄성좌굴강도 해석결과를 근사해 공식과 비교하고 U리브로 보강된 복합적층판의 좌굴모드 변화양상을 수치해석적으로 검토하였다.

  • PDF

Effects of Vehicle Loads on Thermal Buckling Behavior of Continuous Welded Rail Tracks (장대레일 궤도의 온도좌굴 거동에 미치는 열차하중의 영향)

  • Choi, Dong Ho;Kim, Ho Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.727-736
    • /
    • 2000
  • The present study investigates the influences of vehicle induced loads on the thermal buckling behavior of straight and curved continuous welded rail (CWR) tracks. Quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deflection induced by wheel loads of vehicle. The lateral loads of vehicle induced by weight, the speed, the superelevation and curvature of track, and other dynamic vehicle track interaction, are included in the ratio of lateral to vertical vehicle load. Parametric numerical analyses are perfomed to calculate the upper and lower critical buckling temperatures of CWR tracks, and the comparison between the results of this work and the previous results without vehicle is also included.

  • PDF