• Title/Summary/Keyword: 수치감쇠

Search Result 404, Processing Time 0.032 seconds

A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 해석)

  • Sohn, Chae-Hoon;Kim, Young-Mog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.28-37
    • /
    • 2002
  • Acoustic behavior in combustion chamber with acoustoc cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability passively. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Through harmonic analysis, acoustic pressure responses of chamber to acoustic oscillating excitation are shown and the resonant acoustic modes are identified. Acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded significantly. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor (로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구)

  • Sohn, Chae-Hoon;Park, I-Sun;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Effects of mean flow and nozzle damping on acoustic tuning of a gas-liquid scheme coaxial injector are investigated numerically adopting a linear acoustic analysis. The injector plays a role as a half-wave acoustic resonator for acoustic damping in a combustion chamber of a liquid rocket engine. As Mach number of mean flow in a chamber increases, the resonant frequency of the first tangential mode decreases slightly and the optimum injector tuning length varies negligibly. Nozzle damping affects neither the resonant frequency nor the optimum length. From these numerical results, effects of mean flow and nozzle damping on acoustic tuning of a resonator are negligible. As open area of the injectors increases, the acoustic amplitude decreases, but new injector-coupled modes appear.

Numerical Study of Nonlinear Acoustic Damping Induced by Acoustic Resonators in a Rocket Combustor (로켓엔진 연소기내 공명기에 의한 비선형 음향감쇠에 관한 수치해석적 연구)

  • Sohn, Chae-Hoon;Park, I-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Nonlinear acoustic damping of a half-wave acoustic resonator in a rocket combustor is investigated numerically adopting a nonlinear acoustic analysis. First, in a baseline chamber without any resonators, acoustic behavior is investigated over the wide range of acoustic amplitude from 80 dB to 150 dB. Damping factor increases nonlinearly with acoustic amplitude and nonlinearity becomes appreciable at acoustic amplitude above 125 dB. Next, damping effect of a half-wave resonator is investigated. It is found that nonlinear acoustic excitation does not affect optimum tuning condition of the resonator, which is derived from linear acoustics. A half-wave resonator is effective even for acoustic damping of high-amplitude pressure oscillation, but its function of acoustic damper is relatively weakened compared with the case of linear acoustic excitation.

Hydrodynamic Response Analysis of Hybrid Floating Structure according to Length of Damping Plate (수평감쇠판 길이에 따른 하이브리드 부유식 구조물의 거동 특성 분석)

  • Min Su, Park;Youn Ju, Jeong;Young Taek, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.275-289
    • /
    • 2022
  • New businesses such as marine leisure and floating construction have recently flourished on the coast. As a result, consideration is given to a floating structure appropriate for marine environments. In this study, we applied a damping plate to increase the stability of a hybrid floating structure that was expanded by vertical and horizontal stacking of mobile unit modules. In the numerical analysis using ANSYS AQWA, the behavioral characteristics of the floating structure were analyzed according to the length change of the damping plate. However, the wave forces acting on a floating structure are excessively calculated by the resonance of fluid surrounded by the structure in the numerical analysis using potential flow. Therefore, we used the damping zone option of the ANSYS AQWA in the frequency domain analysis.

Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method (추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계)

  • Ok, Seung-Yong;Song, Jun-Ho;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2007
  • Optimal design method of nonlinear damping system for seismic response control of adjacent structures is studied in this paper. The objective functions of the optimal design are defined by structural response and total amount of the dampers. In order to obtain a solution minimizing two mutually conflicting objective functions simultaneously, multi-objective optimization technique based on genetic algorithm is adopted. In addition, stochastic linearization method is embedded into the multi-objective framework to efficiently estimate the seismic responses of the adjacent structures interconnected by nonlinear hysteretic dampers without performing nonlinear time-history analyses. As a numerical example to demonstrate the effectiveness of the proposed technique, 20-story and 10-story buildings are considered and MR dampers of which hysteretic behaviors vary with the magnitude of the input voltage are considered as nonlinear hysteretic damper interconnecting two adjacent buildings. The proposed approach can provide the optimal number and capacities of the MR dampers, which turned out to be more economical than the uniform distribution system while maintaining similar control performance. The proposed damper system is verified to show more stable performance in terms of the pounding probability between two adjacent buildings. The applicability of the proposed method to the design problem for optimally placing semi-active control system is examined as well.

Second order Temporal Finite Element Methods in Linear Elasticity through the Mixed Convolved Action Principle (혼합 합성 변분이론에 근거한 선형탄성시스템의 이차 시간 유한요소해석법)

  • Kim, Jinkyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-182
    • /
    • 2014
  • The mixed convolved action principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation, convolution, and fractional calculus. In this paper, its potential in the development of numerical methods for transient problems in various dynamical systems when adopting temporally second order approximation is investigated. For this, the classical single-degree-of-freedom linear elastic dynamical systems are primarily considered to investigate computational characteristics of the developed algorithms. For the undamped system, all the developed algorithms are symplectic with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Numerical Simulation of Self-Compensating Dynamic Balancer in a Rotating Mechanism (수치해석을 통한 자기보상 동적균형기의 작동성 검토)

  • 이종길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.142-151
    • /
    • 1995
  • 회전체의 자동밸런싱을 위하여 고안된 자기보상 동적균형기는 홈이파인 원판에 강구와 저점성유체를 지닌 구조체이다. 유도된 운동방정식으로 부터 자기보상 동적균형기의 작동조건을 조사하기 우하여 수치해석을 통한 동 특성을 검토하였다. 수치해석의 결과에 근거하여 임계속도보다 높은 범위에서는 자기보상 동적균형기는 정상작동을 보여주었다. 임계속도에서는 회전계의 균형이 강구와 점성유체와의 감쇠계수에 의존하였으나 임계속도보다 낮은 범위에서는 어떠한 조건에 대해서도 작동하지 않음을 알 수 있었다. 자동차 및 항공기에도 응용가은한 자기보상 동적균형기의 작동조건들을 본 논문에서 예시하였다.

  • PDF

Numerical Model on Suspended Load Diffusion due to Tidal Flow (조류(潮流)에 의한 부유사(浮遊砂)의 확산(擴散)에 대한 수치모형(數値模型))

  • Lee, Jong Kyu;Ahn, Soo Hahn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.13-23
    • /
    • 1984
  • The purpose of this paper is to develop a numerical model which can be used to compute the suspended load concentration of which the two-dimensional unsteady diffusion equation is able to be solved by the finite difference method using the implicit scheme. The pick-up rate formula from the bottom used in the open channel as a sink source term and the Coleman's empirical formula for the diffusion coefficient were taken, and especially the hindered settling velocity and the vertical velocity of flow due to the periodical tidal motion were taken into account, while the effects of the variables, such as the horizontal and vertical velocities of flow, tidal range, the settling velocity and hindered settling, on the suspened load concentrations have been discussed, comparing the results obtained from the different cases in the simulation conditions.

  • PDF

Probability of System Failure of Pipe Network with Surge Tank regarding Unsteady Flow (조압수조가 설치된 상수관망의 부정류를 고려한 불능확률)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.651-655
    • /
    • 2009
  • 본 연구에서는 컷 집합(cut set)개념과 파이프의 부정류를 위한 수치해석 결과를 이용하여 상수관망의 불능 확률을 정량적으로 산정하는 신뢰성 해석이 수행되었다. 특히 상수관망에서 중요한 운용형태의 하나인 밸브의 개폐효과에 따른 효과를 통하여 불능확률이 산정되었다. 먼저 부정류 수치해석을 위해서 작은 상수관망을 만들고 여러 가지 시나리오를 재현하였다. 이때 부정류 해석을 위해서 특성선법(the method of characteristics)모형이 사용되었다. 밸브의 개폐에 따라서 여러 가지 형태의 부정류가 발생되고 발생된 부정류를 상수관망의 불능확률을 크게 증가시킨다. 상수관망에서 컷 집합을 추출하여 기준지점에 배출유량(demand)가 도달하지 못할 확률을 불능확률로 규정하여 정량적으로 산정한다. 이를 위해서 컷 집합의 총 유량을 시간에 따라 평균하여 COV를 불능확률 산정에 이용한다. 부정류로 인한 파이프 유량의 변동이 심할수록 COV는 증가하고 결국은 컷 집합의 불능확률은 증가하게 된다. 그리고 똑같은 상수관망에 에너지 감쇠장치인 조압수조가 설치되어 부정류 압력파(pressure wave)를 크게 감소시켰을 때 불능확률을 비교하였다. 조압수조와 같은 압력감쇠장치가 상수관망의 부정류 효과와 불능확률을 크게 저감시키는 것을 알 수 있었다. 또한 신뢰성 해석 결과로부터 부정류가 불능확률을 급격히 증가시킨다는 것을 확인하였다. 따라서 부정류 효과를 고려한 신뢰성 해석은 상수관망의 운용, 관리, 감독, 그리고 설계와 계획을 위해서 필수적이라 할 수 있다.

  • PDF