• Title/Summary/Keyword: 수체 생육

Search Result 61, Processing Time 0.028 seconds

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

Bush Growth and Fruit Quality of 'Duke' Blueberry Influenced by Nutritional Composition in Unheated Plastic House (블루베리 '듀크' 품종의 무가온 하우스 재배에서 질소비율 조절에 따른 수체생육 및 과실품질 변화)

  • Cheon, Mi Geon;Kim, Yeong Bong;Hong, Kwang Pyo;Kumar, H.M. Prathibhani C.;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.319-325
    • /
    • 2018
  • The aim of the present study was to determine the influence of different fertilizer combinations on the growth, yield, and fruit quality of 'Duke' blueberry cultivar and the water quality of growth medium. The experiment was carried out with three year old 'Duke' blueberry bushes which were cultivated in containers ($60{\times}80{\times}40cm$) filled with 130 L peat moss and 40 L pearlite (v/v). Sawdust was used as the mulch in growth containers. Three different fertilizer combinations (FC) i.e., FC-1 consisted with standard solution, FC-2 consisted with nitrogen reduced by 10% from FC-1, and FC-3 consisted with nitrogen reduced by 20% from FC-1 were tested while, the ground water used as the control. The effects of different fertilizer combinations on shoot diameter, shoot length, number of shoots, leaf length, SPAD value (the relative content of chlorophyll), berry weight, soluble solids content, titratable acidity, and yield per bush in 'Duke' blueberry were examined. Also, the effects of different fertilizer combinations on pH, EC, $NH_4$ and $NO_3$ in 'Duke' blueberry growth medium were monitored. The highest pH and lowest EC, $NH_4$ and $NO_3$ in growth medium was recorded with control treatment during the experiment period. The maximum shoot diameter (3.7 mm) and shoot length (35.7 cm) was recorded for the FC-1. Highest number of shoots (47%) were recorded from 'Duke' blueberry bushes supplemented with FC-1 compared to other treatments. The fertilizer combinations supplemented with nitrogen showed significant influence on leaf length and SPAD value compared to control 'Duke' blueberry bushes. However, the fruit quality attributes, i.e., berry weight, soluble solids content, and titratable acidity were not significant different among fertilizer treatments. The significantly highest yields per bush were recorded for FC-1, FC-2, and FC-3, as 2.2, 2.9, and 2.7 kg, respectively compared to control (0.2 kg). Although, the FC-1 was supplemented with highest nitrogen content it resulted low yield per bush while having high number of shoots and vigorous growth.

Effect of the Elevated Carbon Dioxide on the Growth and Physiological Responses of Peach 'Mihong' (CO2 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향)

  • Lee, Seul Ki;Cho, Jung Gun;Jeong, Jae Hoon;Ryu, Suhyun;Han, Jeom Hwa;Do, Gyung-Ran
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 2021
  • This study was conducted to investigate the effect of elevated carbon dioxide on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different carbon dioxide conditions based on climate change scenarios RCP 8.5 in the sunlight phytotron rooms from April 22 to July 6, 2020; 400 µmol·mol-1(present condition), 700 µmol·mol-1 treatment(expecting carbon dioxide concentrations in mid-21st century), 940 µmol·mol-1 treatment (expecting carbon dioxide concentrations in late 21st century). The average of maximum photosynthesis rate at 700 µmol·mol-1(16.06 µmol·CO2·m-2·s-1) was higher than those at 400 µmol·mol-1(14.45 µmol·CO2·m-2·s-1) and 940 µmol·mol-1(15.96 µmol·CO2·m-2·s-1) from May 22 to July 2. However, stomatal conductances at 700 µmol·mol-1 and 940 µmol·mol-1 were lower than those at the control. Also, the carbon dioxide saturation point in all treatments was reduced from 1,200 µmol·mol-1 in the early stage of growth to 600-800 µmol·mol-1 in the late stage of growth. The stomatal densities were decreased as carbon dioxide increased. The shoot lengths were decreased while the carbon dioxide was increased, but the increase of trunk diameter and leaf areas, shoot numbers were not statistically different. The fruit weight at 700 µmol·mol-1(152.5 g) was higher than those at the control(141.8 g) and 940 µmol·mol-1(147.4 g). The soluble solids were higher at 700 µmol·mol-1, 940 µmol·mol-1 compared to the control. These results suggest that a carbon dioxide elevated to 700 µmol·mol-1 in the future may give a positive effect on the yield and fruit quality of peach 'Mihong' while a carbon dioxide elevated above 940 µmol·mol-1 may affect negatively such as early senescence and loss of fruit set.

Growth of One-Year-Old Pot-Cultivated 'Fuji'/M.9 Apple Trees under Different Concentrations of Nitrogen Fertilization (질소시비농도에 따른 1년생 사과 'Fuji'/M.9 포트묘목의 수체 생장)

  • Ha, Woongyong;Shin, Hyunsuk;Lim, Heon-Kyu;Oh, Youngjae;Han, Hyeondae;Kim, Keumsun;Oh, Sewon;Kwon, Yeuseok;Kim, Daeil
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.499-508
    • /
    • 2019
  • The study was carried out to investigate growth of 48.6-L pot-cultivated 1-year-old 'Fuji'/M.9 apple trees depending on different levels of nitrogen concentration. While rise in tree growth was paralleled with increase of nitrogen concentration, more than 32 mM of nitrogen rather restrained tree growth. In particular, growth of 16 mM of nitrogen treated trees was satisfied with criteria for production of high-quality pot-cultivated nursery stocks. Although mineral contents of leaves were higher in 8 and 16 mM nitrogen treatments than commonly recommended mineral contents in apple orchards, such somewhat surplus minerals could be helpful for tree growth after transplanting to apple orchards. In addition, our result indicated that soils of 8 and 16 mM of nitrogen treated pots met appropriate criteria for soil chemical property of apple orchards. Thus, in the light of tree growth, mineral contents of leaves, and soil chemical property in the pots, 16 mM of nitrogen treatment is considered to be suitable for production of 1-year-old 'Fuji'/M.9 apple potted trees.

Enfluence of the Number of the Lower Scaffold Limbs in Slender Spindle Form on the Tree Growth and Development of 'Fuji' Apple Trees ('후지' 사과나무 세장방추형에서 하단측지수가 수체생육에 미치는 영향)

  • Park, Moo-Yong;Yang, Sang-Jin;Park, Jeung-Kwan;Choi, Dong-Geun;Kang, In-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • This study was carried out to investigate the effects of number of the lower scaffold limbs on tree growth, light penetration, fruit yield, and fruit quality in slender spindle in 6-year-old 'Fuji'/M.9 apple trees. With regard to the growth by the numbers of the lower scaffold limbs, the width of the tree was wide and the growth of new shoots was increased when the number of the lower scaffold limbs was five. Compare with other treatments, five lower scaffold limbs showed high light-interception on the upper (150 cm above the ground) and middle (100 cm above the ground) canopy. There was no difference in the total number of the flower buds of the spurs according to the number of scaffold limbs, but the number and cross section area of flower bud on the lower canopy (120 cm above the ground) were increased where the number of the lower scaffold limbs was five. Fruit yield was highest in the treated with five lower scaffold limbs and fruit weight tended to increase where the number of the lower scaffold limbs was five or eight. With regard to fruit quality, there showed no difference in fruit shape index, firmness, acid content, Hunter L and b value according to the location of canopy and the number of the lower scaffold limbs, but the content of soluble solids was highest treated with five lower scaffold limbs. Hunter a value indicating fruit color was found to be highest treated with five lower scaffold limbs whose light interception was highest.

Effect of the Elevated Temperature on the Growth and Physiological Responses of Peach 'Mihong' (Prunus persica) (온도 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향)

  • Lee, Seul Ki;Cho, Jung Gun;Jeong, Jae Hoon;Ryu, Suhyun;Han, Jeom Hwa;Do, Gyung-Ran
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 2020
  • This study was conducted to investigate the effect of elevated temperatures on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different temperature conditions in the sunlight phytotron rooms from April 25 to July 5, 2019; Control (average temperature in normal years in Jeonju city), +3.4℃ treatment (expecting temperature in mid-21st century), +5.7℃ treatment (expecting temperature in late 21st century). The shoot numbers and lengths were increased while the temperature was increased, but the leaf areas were not statistically different. The harvest dates were July 1, June 24 and 21 at the control, +3.4℃, and +5.7℃, respectively. The fruit weights were increased at +3.4℃ but decreased at +5.7℃ compared to the control. The tree yield was the highest in the +3.4℃ (2,898g), followed by the control (2,746g) and the +5.7℃ (2,404g). These are related to the result that the average of maximum photosynthesis rate at 3.4℃ (14.93μmol·CO2·m-2·s-1) was higher than those at the control (13.79μmol·CO2·m-2·s-1) and +5.7℃ (13.20μmol·CO2·m-2·s-1) from mid-May to early June, the fruit growing season. Also, the stomatal densities were higher at the +3.4℃ (229ea/㎟), compared to the control (181ea/㎟). The rate of floral bud differentiation affecting the yield in the following year was the lowest at the +5.7℃. These results suggest that a temperature elevated to 3.4℃ in the future may give a positive effect on the yield and quality of peach 'Mihong' while a temperature elevated above 5.7℃ may affect negatively.

Growth Characteristics of Hydroponically Grown Melon according to Volume of Granular Rockwool and Substrates of Coir and Rockwool (입상 암면 용량과 코이어 및 암면 배지 종류에 따른 수경재배 멜론의 생육 특성)

  • Dae Ho Jung;Su Hwan Oh;Da Mi Kim;Su Oh Lee;Chul Hee Cho;Hye Won Cho;Chul Kyoo Ha;Hyun-Ah Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.72-80
    • /
    • 2023
  • Melons, a rich source of vitamins and fibers, are commonly grown in the soil. Hydroponic cultivation could improve yield and quality of melon and selection of substrate volume and the kind of substrates is important for hydroponic cultivation of melons. This study investigated the effect on melon growth according to volume of granular rockwool and substrates of coir and rockwool slab. 'Geumsegye' melon (Cucumis melo L. cv. Geumsegye) was cultivated hydroponically according to volume of granular rockwool to 1.0, 1.5, 2.0, 3.0, and 4.0 L, and was also cultivated using coir and rockwool slabs. Logistic model was applied to estimate the growth characteristics of melons such as plant height, leaf length, leaf width, and the characteristics of fruit. The growth characteristics of melons were significantly increased at 4.0 L compared to those grown of 1.0 L volume of on granular rockwool, and the results were the highest in coir and rockwool slabs. Melons grown in rockwool slabs showed the largest fruit fresh weight, fruit length, and fruit width. During hydroponic cultivation, growth characteristics of melon appropriate at the 4.0 L volume of granular rockwool, and the highest at coir and rockwool slabs. This study provides a basis for understanding the effect of root zone environment to the growth characteristics and fruit quality of non-netted melon.

Effect of Organic Fertilizer and Mulch Sources on Growth and CO2 Assimilation in MM.106 Apple Trees (유기질 비료와 멀칭자재가 MM.106 사과 대목의 생장과 광합성에 미치는 영향*)

  • Choi, Hyun-Sug;Rom, Curt;Kim, Wol-Soo;Choi, Kyeong-Ju;Lee, Youn
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.245-255
    • /
    • 2010
  • The study was conducted to investigate the effects of organic fertilizers and mulches on the growth and $CO_2$ assimilation in MM.106 apple trees. Growth and $CO_2$ assimilation of MM.106 apple trees grown in a greenhouse were affected by the nutrient concentrations and carbon (C) and nitrogen (N) ratio in the raw materials of organic fertilizers and mulches. The optimum C:N ratios, which makes microorganism convert the organic N into the inorganic N, were obtained in the organic fertilizer, poultry litter, green compost, and grass clippings, resulting in increasing single shoot height, SPAD, and $CO_2$ assimilation. The SPAD and $CO_2$ assimilation were affected by the treatments 5 weeks after the treatments, and then the tree growth was affected by the treatments 6 weeks later. The most efficient tree growth and development were observed in the 10 to $15\;mg{\cdot}kg^{-1}$ of the inorganic N in a soil, and the N was strongly related to the tree growth and development.

Effects of Crop Loads on Vine Growth and Fruit Quality of 'Jinok' Grape in Unheated Plastic House (포도 '진옥' 품종의 무가온 하우스 재배시 착과량이 수체생육 및 과실품질에 미치는 영향)

  • Cheon, Mi Geon;Kim, Yeong Bong;Kim, Seong Ran;Lee, Kang Mo;Hong, Gwang Pyo;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.296-300
    • /
    • 2015
  • This study was conducted to investigate optimal crop loads of 'Jinok' grape for unheated plastic house culture. The crop loads of 'Jinok' grapes were managed to be 1.3, 1.8, 2.2, 2.4, and 2.6t per 10a from 2012 to 2014. We measured vine growth and berry qualities. Crop loads were not significantly affected on plant height, trunk diameter, shoot length, and the internode length of 'Jinok'. However, the maturation of berries was delayed when the crop load was higher. And the harvest date was earlier about three weeks in an unheated plastic house compared to in an open field. The average berry weight was decreased by the higher crop load although higher crop loads made higher yields showing the lowest weight at 342g with the treatment of 2.6t per 10a and the highest weight at 363g with the treatment of 1.3t per 10a. Also, the soluble solids content showed a tendency that higher crop loads brought to lower degree Brix. The contents of P, K, Ca, and Mg in grape leaves and shoots were not significantly different by crop loads. To sum up, when crop loads were under the 2.4t per 10a, the berries were harvested as a marketable fruit having $15^{\circ}Brix$ in the cultivar 'Jinok' grape. This result could help to increase grower's benefit having improved quality of fruit for the sustainable production by the established cultivation techniques for the newly developed cultivar 'Jinok'.

Effect of Tree Height on Light Transmission, Spray Penetration, Tree Growth, and Fruit Quality in the Slender-spindle System of 'Hongro'/M9 Apple Trees ('홍로'/M.9 사과나무의 세장방추형에서 수고가 투광율, 투약율, 수체 생육 및 과실 품질에 미치는 영향)

  • Choi, Dong Geun;Song, Ju-Hee;Kang, In-Kyu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.454-462
    • /
    • 2014
  • This study was carried out to determine the effect of tree height on light transmission, spray penetration, tree growth performance, fruit quality attributes, and labor productivity in the slender-spindle system of 'Hongro'/M.9 apple trees. With increasing tree height, the light penetration into the internal parts of the canopy decreased, especially in the lower canopy. Leaf area index (LAI) increased with increasing tree height, thereby leading to a reduction in the extent of spray penetration into the interior of the canopy. With increasing tree height, shoot growth was more vigorous but produced slender shoots in the upper canopy compared to the lower canopy. Although the soluble solid content and coloration of fruit decreased, there was no difference in fruit firmness and acidity. In addition, the number of final fruit set increased, although the production of large fruit (> 305 g) decreased. The increase in tree height also significantly increased the labor required for practices such as thinning of flowers and fruits, pruning, and harvesting. Nevertheless, this problem of increased in labor input in taller trees would was eased by use of a mechanical lift. Utilizing a lift for thinning the flowers of trees 4.5 m in height saved 14.6 min per tree, compared to the use of ladder. Therefore, it is highly considerable that in order to enhance light transmission and fruit coloration, light conditions should be improved in the internal tree canopy of slender-spindle systems.