Browse > Article
http://dx.doi.org/10.12791/KSBEC.2021.30.4.312

Effect of the Elevated Carbon Dioxide on the Growth and Physiological Responses of Peach 'Mihong'  

Lee, Seul Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science)
Cho, Jung Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science)
Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science)
Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science)
Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science)
Do, Gyung-Ran (Planning and Coordination Division, National Institute of Horticultural & Herbal Science)
Publication Information
Journal of Bio-Environment Control / v.30, no.4, 2021 , pp. 312-319 More about this Journal
Abstract
This study was conducted to investigate the effect of elevated carbon dioxide on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different carbon dioxide conditions based on climate change scenarios RCP 8.5 in the sunlight phytotron rooms from April 22 to July 6, 2020; 400 µmol·mol-1(present condition), 700 µmol·mol-1 treatment(expecting carbon dioxide concentrations in mid-21st century), 940 µmol·mol-1 treatment (expecting carbon dioxide concentrations in late 21st century). The average of maximum photosynthesis rate at 700 µmol·mol-1(16.06 µmol·CO2·m-2·s-1) was higher than those at 400 µmol·mol-1(14.45 µmol·CO2·m-2·s-1) and 940 µmol·mol-1(15.96 µmol·CO2·m-2·s-1) from May 22 to July 2. However, stomatal conductances at 700 µmol·mol-1 and 940 µmol·mol-1 were lower than those at the control. Also, the carbon dioxide saturation point in all treatments was reduced from 1,200 µmol·mol-1 in the early stage of growth to 600-800 µmol·mol-1 in the late stage of growth. The stomatal densities were decreased as carbon dioxide increased. The shoot lengths were decreased while the carbon dioxide was increased, but the increase of trunk diameter and leaf areas, shoot numbers were not statistically different. The fruit weight at 700 µmol·mol-1(152.5 g) was higher than those at the control(141.8 g) and 940 µmol·mol-1(147.4 g). The soluble solids were higher at 700 µmol·mol-1, 940 µmol·mol-1 compared to the control. These results suggest that a carbon dioxide elevated to 700 µmol·mol-1 in the future may give a positive effect on the yield and fruit quality of peach 'Mihong' while a carbon dioxide elevated above 940 µmol·mol-1 may affect negatively such as early senescence and loss of fruit set.
Keywords
Prunus persica; climate change; photosynthesis; shoot length; soluble solid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lim S.C., S.K. Kim, C.K. Youn, Y.H. Kim, D.H. Kim, and T. Youn 2003, Effect of forcing culture system on leaf starch and mineral content on peaches. J Kor Soc Hort Sci 44:76-81. (in Korean)
2 Chae J.C., S.J. Park, B.H. Kang, and S.H. Kim 2006, Principles of crop cultivation. Hyangmoonsha Press, Seoul, Korea, pp 192-193. (in Korean)
3 KMA(Korea Meteorological Administration) 2018, Climate change report. Seoul, Korea, pp 10.
4 Son I.C., J.W. Han, J.G. Cho, S.H. Kim, E.H. Chang, S.I. Oh, K.H. Moon, and I.M. Choi 2014, Effect of the elevated temperature and carbon dioxide on vine growth and fruit quality of 'Campbell Early' grapevines (Vitis labruscana). Kor J Hort Sci Technol 33:781-787. (in Korean) doi:10.7235/hort.2014.13059   DOI
5 Lee S.K., J.G. Cho, J.H. Jeong, S. Ryu, J.H. Han, and G.R. Do 2020, Effect of the elevated temperature on the growth and physiological responses of peach 'Mihong' (Prunus persica). Protected Hort Plant Fac 29:373-380. (in Korean) doi:10.12791/KSBEC.2020.29.4.373   DOI
6 Han J.H., J.G. Cho, I.C. Son, S.H. Kim, I.B. Lee, I.M. Choi, and D.E. Kim 2012, Effects of elevated carbon dioxide and temperature on photosynthesis and fruit characteristics of 'Niitaka' pear (Pyrus pyrifolia Nakai). Hortic Environ Biotechnol 53:357-361. doi:10.1007/s13580-012-0047-x   DOI
7 Islam S., T. Matsui, and Y. Yoshida 1996, Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci Hortic 65:137-149. doi:10.1016/0304-4238(95)00867-5   DOI
8 Kweon H.J., D.H. Sagong, M.Y. Park., Y.Y. Song, K.H. Chung, J.C. Nam, J.H. Han, and K.R. Do 2013, Influence of elevated CO2 and air temperature on photosynthesis, shoot growth, and fruit quality of 'Fuji'/M.9 apple tree. Korean J Agric For Meteorol 15:245-263. (in Korean) doi:10.5532/KJAFM.2013.15.4.245   DOI
9 Delucia E.H., T.W. Sasek, and B.R. Strain 1985, Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth Res 7:175-184. doi:10.1007/BF00037008   DOI
10 Tartachnyk I., and M. Blanke 2004, Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytol 164:441-450. doi:10.1111/j.1469-8137.2004.01197.x   DOI
11 Kim P. and E.J. Lee 2001, Ecophysiology of photosynthesis3: Photosynthetic responses to elevated atmospheric CO2 concentration and temperature. Kor J Agric For Meteor 3:238-243. (in Korean)
12 KMA(Korea Meteorological Administration) 2021. www.clim ate.go.kr/home/09_monitoring/main Accessed 7 July 2021.
13 Pritchard S.G., H.H. Rogers, S.A. Prior, and C.M. Peterson 1999, Elevated CO2 and plant structure: a review. Glob Chang Biol 5:807-837. doi:10.1046/j.1365-2486.1999.00268.x   DOI
14 Qian T., J.A. Dieleman, A. Elings, and L.F.M. Marcelis 2012, Leaf photosynthetic and morphological responses to elevated CO2 concentration and altered fruit number in the semi-closed greenhouse. Sci Hortic 145:1-9. doi:10.1016/j.scienta.2012.07.015   DOI
15 Rogiers S.Y., W.J. Hardie, and J.P. Smith 2011, Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Aus J Grape Wine Res 17:147-152. doi:10.1111/j.1755-0238.2011.00124.x   DOI
16 Woodward F.I., and C.K. Kelly 1995, The influence of CO2 concentration on stomatal density. New Phytol 131:311-327. doi:10.1111/j.1469-8137.1995.tb03067.x   DOI
17 Rogers H.H., and R.C. Dahlman 1993, Crop responses to CO2 enrichment. Vegetation 104:117-131. doi:10.1007/978-94-011-1797-5_8   DOI
18 Yoon I.K., S.K. Yun, J.H. Jun, E.Y. Nam, J.H. Kwon, H.J. Bae, B.W. Moon, and H.K. Kang 2013, Analysis on the leaf growth and changes of photosynthetic characterization by leaf position in 'Changhowon Hwangdo' peach. Protected Hort Plant Fac 22:361-365. (in Korean) doi:10.12791/KSBEC.2013.22.4.361   DOI
19 Kim Y.H., I.B. Lee, C. Chun, H.S. Hwang, S.W. Hong, I.H. Seo, J.I. Yoo, J.P. Bitog, and K.S. Kwon 2009, Utilization of CO2 Influenced by windbreak in an elevated production system for strawberry. J Bio-Env Con 18:29-39. (in Korean)
20 Li Y., L.R. Wang, G.R. Zhu, W.C. Fang, K. Cao, C.W. Chen, X.W. Wang, and X.L. Wang. 2016, Phenological response of peach to climate change exhibits a relatively dramatic trend in China, 1983-2012. Sci Hortic 209:192-200. doi:10.1016/j.scienta.2016.06.019   DOI
21 Centritto M. 2002, The effects of elevated CO2 and water availability on growth and physiology of peach (Prunus persica) plants. Plant Biosyst 136:177-188. doi:10.1080/11263500212331351079   DOI
22 Yelle S., R.C. Beeson, M.J. Trudel, and A. Gosselin 1989, Acclimation of two tomato species to high atmospheric CO2. Plant Physiol 90:1465-1472. doi:10.1104/pp.90.4.1465   DOI
23 Zhou R., and B. Quebedeaux 2003, Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source-sink manipulation. J Amer Soc Hort Sci 128:113-119. doi:10.21273/JASHS.128.1.0113   DOI
24 Moutinho-Pereira J.M., B. Goncalves, E. Bacelar, J. Boaventura Cunha, J. Coutinho, and C.M. Correia 2009, Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48:159-165.
25 KMA(Korea Meteorological Administration) 2012, Climate change report. Seoul, Korea, pp 21.
26 Leymarie J., G. Lasceve, and A. Vavasseur 1999, Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell Environ 22:301-308. doi:10.1046/j.1365-3040.1999.00403.x   DOI