DOI QR코드

DOI QR Code

Effect of the Elevated Carbon Dioxide on the Growth and Physiological Responses of Peach 'Mihong'

CO2 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향

  • Lee, Seul Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Cho, Jung Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Do, Gyung-Ran (Planning and Coordination Division, National Institute of Horticultural & Herbal Science)
  • 이슬기 (국립원예특작과학원 과수과) ;
  • 조정건 (국립원예특작과학원 과수과) ;
  • 정재훈 (국립원예특작과학원 과수과) ;
  • 류수현 (국립원예특작과학원 과수과) ;
  • 한점화 (국립원예특작과학원 과수과) ;
  • 도경란 (국립원예특작과학원 기획조정과)
  • Received : 2021.08.09
  • Accepted : 2021.10.01
  • Published : 2021.10.31

Abstract

This study was conducted to investigate the effect of elevated carbon dioxide on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different carbon dioxide conditions based on climate change scenarios RCP 8.5 in the sunlight phytotron rooms from April 22 to July 6, 2020; 400 µmol·mol-1(present condition), 700 µmol·mol-1 treatment(expecting carbon dioxide concentrations in mid-21st century), 940 µmol·mol-1 treatment (expecting carbon dioxide concentrations in late 21st century). The average of maximum photosynthesis rate at 700 µmol·mol-1(16.06 µmol·CO2·m-2·s-1) was higher than those at 400 µmol·mol-1(14.45 µmol·CO2·m-2·s-1) and 940 µmol·mol-1(15.96 µmol·CO2·m-2·s-1) from May 22 to July 2. However, stomatal conductances at 700 µmol·mol-1 and 940 µmol·mol-1 were lower than those at the control. Also, the carbon dioxide saturation point in all treatments was reduced from 1,200 µmol·mol-1 in the early stage of growth to 600-800 µmol·mol-1 in the late stage of growth. The stomatal densities were decreased as carbon dioxide increased. The shoot lengths were decreased while the carbon dioxide was increased, but the increase of trunk diameter and leaf areas, shoot numbers were not statistically different. The fruit weight at 700 µmol·mol-1(152.5 g) was higher than those at the control(141.8 g) and 940 µmol·mol-1(147.4 g). The soluble solids were higher at 700 µmol·mol-1, 940 µmol·mol-1 compared to the control. These results suggest that a carbon dioxide elevated to 700 µmol·mol-1 in the future may give a positive effect on the yield and fruit quality of peach 'Mihong' while a carbon dioxide elevated above 940 µmol·mol-1 may affect negatively such as early senescence and loss of fruit set.

본 연구는 CO2 상승 처리에 따른 복숭아 '미홍' 품종의 수체생육 및 생리반응에 미치는 영향을 알아보고자 수행하였다. CO2 농도는 기후변화 시나리오 RCP8.5를 기반하여 400µmol·mol-1(현재), CO2 상승구 700µmol·mol-1(21C 중반기), 940µmol·mol-1(21C 후반기)으로 4월 22일부터 7월 6일까지 처리하였다. 5월 22일부터 7월 2일까지의 최대광합성률 평균값은 700µmol·mol-1 처리구에서 16.06µmol·CO2·m-2·s-1으로 대조구 14.45µmol·CO2·m-2·s-1와 940µmol·mol-1 처리구의 15.96µmol·CO2·m-2·s-1보다 높았다. 그러나 기공전도도는 대조구보다 700µmol·mol-1 및 940µmol·mol-1 처리구에서 낮았다. 또한 모든 처리구에서 CO2 포화점은 생육 초기 1,200µmol·mol-1에서 생육 후기 600-800µmol·mol-1으로 낮아졌다. 기공 밀도는 CO2가 상승할수록 감소하였다. 수체생육 중 직경증가량, 엽면적, 신초 수는 통계적 유의차가 없었지만, 신초 길이는 CO2가 상승할수록 짧아졌다. 과중은 700µmol·mol-1(152.5g), 940µmol·mol-1(147.4g), 400µmol·mol-1(141.8g) 처리구 순으로 높았다. 가용성 고형물 함량은 대조구인 400µmol·mol-1 처리구보다 CO2 상승 처리구에서 유의적으로 증가하였다. 이상의 결과들을 종합하면 700µmol·mol-1 까지의 CO2 상승은 복숭아 '미홍'의 수량과 가용성 고형물 함량 등 과실 품질에 긍정적인 영향을 주는 반면, 940µmol·mol-1 이상의 CO2 상승은 조기 노화 및 착과 부위 감소 등 복숭아 생산성에 부정적인 영향을 미치는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(과제번호: PJ01358601)의 지원에 의해 수행되었음.

References

  1. Centritto M. 2002, The effects of elevated CO2 and water availability on growth and physiology of peach (Prunus persica) plants. Plant Biosyst 136:177-188. doi:10.1080/11263500212331351079
  2. Chae J.C., S.J. Park, B.H. Kang, and S.H. Kim 2006, Principles of crop cultivation. Hyangmoonsha Press, Seoul, Korea, pp 192-193. (in Korean)
  3. Delucia E.H., T.W. Sasek, and B.R. Strain 1985, Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth Res 7:175-184. doi:10.1007/BF00037008
  4. Han J.H., J.G. Cho, I.C. Son, S.H. Kim, I.B. Lee, I.M. Choi, and D.E. Kim 2012, Effects of elevated carbon dioxide and temperature on photosynthesis and fruit characteristics of 'Niitaka' pear (Pyrus pyrifolia Nakai). Hortic Environ Biotechnol 53:357-361. doi:10.1007/s13580-012-0047-x
  5. Islam S., T. Matsui, and Y. Yoshida 1996, Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci Hortic 65:137-149. doi:10.1016/0304-4238(95)00867-5
  6. Kim P. and E.J. Lee 2001, Ecophysiology of photosynthesis3: Photosynthetic responses to elevated atmospheric CO2 concentration and temperature. Kor J Agric For Meteor 3:238-243. (in Korean)
  7. Kim Y.H., I.B. Lee, C. Chun, H.S. Hwang, S.W. Hong, I.H. Seo, J.I. Yoo, J.P. Bitog, and K.S. Kwon 2009, Utilization of CO2 Influenced by windbreak in an elevated production system for strawberry. J Bio-Env Con 18:29-39. (in Korean)
  8. KMA(Korea Meteorological Administration) 2012, Climate change report. Seoul, Korea, pp 21.
  9. KMA(Korea Meteorological Administration) 2018, Climate change report. Seoul, Korea, pp 10.
  10. KMA(Korea Meteorological Administration) 2021. www.clim ate.go.kr/home/09_monitoring/main Accessed 7 July 2021.
  11. Kweon H.J., D.H. Sagong, M.Y. Park., Y.Y. Song, K.H. Chung, J.C. Nam, J.H. Han, and K.R. Do 2013, Influence of elevated CO2 and air temperature on photosynthesis, shoot growth, and fruit quality of 'Fuji'/M.9 apple tree. Korean J Agric For Meteorol 15:245-263. (in Korean) doi:10.5532/KJAFM.2013.15.4.245
  12. Lee S.K., J.G. Cho, J.H. Jeong, S. Ryu, J.H. Han, and G.R. Do 2020, Effect of the elevated temperature on the growth and physiological responses of peach 'Mihong' (Prunus persica). Protected Hort Plant Fac 29:373-380. (in Korean) doi:10.12791/KSBEC.2020.29.4.373
  13. Leymarie J., G. Lasceve, and A. Vavasseur 1999, Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell Environ 22:301-308. doi:10.1046/j.1365-3040.1999.00403.x
  14. Li Y., L.R. Wang, G.R. Zhu, W.C. Fang, K. Cao, C.W. Chen, X.W. Wang, and X.L. Wang. 2016, Phenological response of peach to climate change exhibits a relatively dramatic trend in China, 1983-2012. Sci Hortic 209:192-200. doi:10.1016/j.scienta.2016.06.019
  15. Lim S.C., S.K. Kim, C.K. Youn, Y.H. Kim, D.H. Kim, and T. Youn 2003, Effect of forcing culture system on leaf starch and mineral content on peaches. J Kor Soc Hort Sci 44:76-81. (in Korean)
  16. Moutinho-Pereira J.M., B. Goncalves, E. Bacelar, J. Boaventura Cunha, J. Coutinho, and C.M. Correia 2009, Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48:159-165.
  17. Pritchard S.G., H.H. Rogers, S.A. Prior, and C.M. Peterson 1999, Elevated CO2 and plant structure: a review. Glob Chang Biol 5:807-837. doi:10.1046/j.1365-2486.1999.00268.x
  18. Qian T., J.A. Dieleman, A. Elings, and L.F.M. Marcelis 2012, Leaf photosynthetic and morphological responses to elevated CO2 concentration and altered fruit number in the semi-closed greenhouse. Sci Hortic 145:1-9. doi:10.1016/j.scienta.2012.07.015
  19. Rogers H.H., and R.C. Dahlman 1993, Crop responses to CO2 enrichment. Vegetation 104:117-131. doi:10.1007/978-94-011-1797-5_8
  20. Rogiers S.Y., W.J. Hardie, and J.P. Smith 2011, Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Aus J Grape Wine Res 17:147-152. doi:10.1111/j.1755-0238.2011.00124.x
  21. Son I.C., J.W. Han, J.G. Cho, S.H. Kim, E.H. Chang, S.I. Oh, K.H. Moon, and I.M. Choi 2014, Effect of the elevated temperature and carbon dioxide on vine growth and fruit quality of 'Campbell Early' grapevines (Vitis labruscana). Kor J Hort Sci Technol 33:781-787. (in Korean) doi:10.7235/hort.2014.13059
  22. Tartachnyk I., and M. Blanke 2004, Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytol 164:441-450. doi:10.1111/j.1469-8137.2004.01197.x
  23. Woodward F.I., and C.K. Kelly 1995, The influence of CO2 concentration on stomatal density. New Phytol 131:311-327. doi:10.1111/j.1469-8137.1995.tb03067.x
  24. Yelle S., R.C. Beeson, M.J. Trudel, and A. Gosselin 1989, Acclimation of two tomato species to high atmospheric CO2. Plant Physiol 90:1465-1472. doi:10.1104/pp.90.4.1465
  25. Yoon I.K., S.K. Yun, J.H. Jun, E.Y. Nam, J.H. Kwon, H.J. Bae, B.W. Moon, and H.K. Kang 2013, Analysis on the leaf growth and changes of photosynthetic characterization by leaf position in 'Changhowon Hwangdo' peach. Protected Hort Plant Fac 22:361-365. (in Korean) doi:10.12791/KSBEC.2013.22.4.361
  26. Zhou R., and B. Quebedeaux 2003, Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source-sink manipulation. J Amer Soc Hort Sci 128:113-119. doi:10.21273/JASHS.128.1.0113