• Title/Summary/Keyword: 수전해 수소 생산 기술

Search Result 30, Processing Time 0.024 seconds

Optimization of Operating Parameters for Alkaline Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해의 운전 조건 최적화)

  • Jang, Myeong-Je;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.151-151
    • /
    • 2016
  • 수소는 친환경 에너지원으로 주목 받고 있으며 미래 화석연료의 고갈에 대비할 수 있는 물질이다. 수전해는 natural gas steam reforming 또는 coal gasification 같은 방법에 비해 공해 물질의 방출이 없어 미래지향적인 기술로 간주된다. 저온형 수전해는 크게 알칼리 수전해와 고분자 전해질막 수전해로 구분되며 각각의 기술은 장단점을 가지고 있다. 알칼리 수전해는 비백금계 물질을 촉매로 사용할 수 있는 이점이 있으나 알칼리 용액으로 인한 부식, 높은 과전압에 의한 효율저하 그리고 간헐적인 사용에 적합하지 않다. 고분자 전해질막 수전해는 간헐적인 사용이 용이하고 높은 에너지 밀도를 가지지만 산성분위기로 인한 백금계 촉매를 사용해야 하므로 수소 생산 비용이 증가하게 된다. 본 연구에서는 알칼리 수전해와 고분자 전해질막 수전해 방식의 이점을 최대한 이용하고 단점을 극복하기 위한 방법으로 음이온 교환막(anion exchange membrane, AEM)을 적용한 셀 구조를 소개한다. 본문에서는 AEM 수전해 단위 셀의 구성요소들인 AEM 종류, 가스 확산층의 밀도와 운전조건인 알칼리 수용액 농도, 온도의 조건을 다르게 하여 최상의 구성 요소 조건 및 운전조건을 알아보았다.

  • PDF

Techno-economic Analysis(TEA) on Hybrid Process for Hydrogen Production Combined with Biomass Gasification Using Oxygen Released from the Water Electrolysis Based on Renewable Energy (재생에너지기반 수전해 생산 수소와 바이오매스 가스화 하이브리드 공정의 기술 경제성 분석)

  • Park, Sungho;Ryu, JuYeol;Sohn, Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.65-73
    • /
    • 2020
  • To reduce the hydrogen production cost through the utilizing the oxygen and improving the capacity factor of water electrolysis used to energy storage of renewable energy, the hybrid hydrogen production process which has dual operating concept of using the water electrolysis as energy storage and oxygen production process for biomass gasification was proposed. Moreover, Techno-economic analysis on this system was quantitatively performed.

Understanding Thermodynamics of Operating Voltage and Efficiency in PEM Water Electrolysis System for Carbon Neutrality and Green Hydrogen Energy Transition (탄소중립과 그린 수소에너지 전환을 위한 PEM 수전해 시스템에서 작동 전압 및 효율의 열역학적 이해)

  • HyungKuk Ju;Sungyool Bong;Seungyoung Park;Chang Hyun Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.56-63
    • /
    • 2023
  • The development of renewable energy technologies, such as solar, wave, and wind power, has led to the diversification of water electrolysis technologies, which can be easily coupled with renewable energy sources in terms of economics and scale. Water electrolysis technologies can be classified into three types based on operating temperature: low-temperature (<100 ℃), medium-temperature (300-700 ℃), and high-temperature (>700 ℃). It can also be classified by the type of electrolyte membrane used in the system. However, the concepts of thermodynamic and thermo-neutral voltages calculations and are very important factors in the evaluation of energy consumption and efficiency of water electrolysis technologies, are often confused. This review aims to contribute to a better understanding of the calculation of operating voltage and efficiency of PEM water electrolysis technologies and to clarify the differences between thermodynamic voltage and thermo-neutral voltage.

Oxygen Evolution Characteristics of Non-Noble Metal Electrochemical Catalysts for Water Electrolysis (비귀금속 전기화학 촉매의 수전해 산소 발생 특성)

  • Park, Yu-Se;Choe, Seung-Mok;Lee, Gyu-Hwan;Kim, Yang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.168.1-168.1
    • /
    • 2017
  • 화석연료를 대체하기 위한 에너지원으로서 수소에너지에 대한 연구가 활발히 진행되고 있다. 수전해는 무한 청정한 물을 전기분해하여 수소를 생산하는 기술로써 대표적으로 알칼리 수전해(alkaline water electrolysis, AWE)와 고분자 전해질막 수전해(polymer electrolyte membrane water electrolysis, PEMWE)가 있다. 그 중, AWE는 알칼리 분위기에서 물분해 반응이 진행되어 촉매의 부식 위험성이 비교적 낮기 때문에 상대적으로 저렴한 비귀금속 산화물 촉매를 사용할 수 있다는 장점이 있다. 본 연구에서는 비귀금속인 Cu, Co를 이용하여 $CuCoO_4$를 합성한 후 산소 발생 촉매 물질로 활용하여 산소 발생 반응(Oxygen Evolution Reaction, OER)특성을 고찰하였다.

  • PDF

Hydrogen Production Systems through Water Electrolysis (물 전기분해에 의한 수소제조 기술)

  • Hwang, Gab-Jin;Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • Hydrogen is one of energy storage systems, which could be transfer from electric energy to chemical energy or from chemical energy to electric energy, and is as an energy carrier. Water electrolysis is being investigating as one of the hydrogen production methods. Recently, water electrolysis receive attention for the element technology in PTG (power to gas) and PTL (power to liquid) system. In this paper, it was explained the principle and type for the water electrolysis, and recent research review for the alkaline water electrolysis.

Introductions for Foreign PEM Systems and It's Field Test Plan Linked to Renewable Energy in Jeju Island (국외 PEM 수전해시스템 도입 및 제주도 재생에너지 연계 실증방안)

  • Sangyup Jang;Jaedong Kim;Dongmin Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.33-37
    • /
    • 2023
  • Efforts by each country to solve the climate change problem continue, and the transition to eco-friendly fuels is a task for mankind to continue. Recently, Jeju Island, where renewable energy resources are relatively abundant, is preparing to demonstrate the technology to produce green hydrogen linked to renewable energy and this study aims to introduce and apply polymer electrolyte water electrolysis devices of advanced foreign companies after comparing domestic and foreign technologies. This study aims to solve domestic safety regulations for water electrolysis devices manufactured overseas and system introduction process and evaluation method of core components.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

The Present Condition and Outlook of Hydrogen Industry in Alberta, Canada (캐나다 앨버타주의 수소산업 현황 및 전망)

  • Moon, Bryan;Lee, Wonsuk;Lee, Youngsoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Based on Korea's Hydrogen Economy Activation Roadmap, an annual supply of 5.26 million tonnes of hydrogen is required by 2040. But if the hydrogen production from byproduct, extraction, and electrolysis of water is not able to meet the target which is 50% of total production, it would be necessary to increase the portion of imported hydrogen. Therefore, it is essential to secure a variety of sources for overseas production. In this technical report, hydrogen production/transportation policies, current condition, and future prospects of Canada, a major supply candidate, is examined and an example of blue hydrogen project which is considered the most realistic hydrogen supply method is introduced.

Influence of Operation Conditions on the Performance of PEM Water Electrolysis (운전조건이 PEM 수전해 셀의 성능에 미치는 영향)

  • Sangyup Jang;Jaedong Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Green Hydrogen demonstration complex is under conduction in Jeju island which is rich in renewable energy resources and will produces green hydrogen using a water electrolysis systems. In order to check durability of long-term operation, AST(accelerated stress test) was applied and the power pattern based on Jeju Island's wind power was applied. After 800 hours of repeated application of low current and high current, the performance of the PEM water electrolysis cell was reduced by up to 10% and by about 5.5% in operating conditions. As the result of impedance analysis, it can be seen that the electrode polarization resistance greatly increased than ohmic polarization resistance. In addition, when the durability evaluation was conducted by applying the wind power pattern of Jeju Island, the performance of the PEM water electrolysis cell showed up to 1.6% and a decrease of less than 1% in operating conditions. As a result of the impedance, it can be seen that the change of ohmic resistance and electrode polarization resistance is small.

Predicting Initial Construction Costs of Electrolysis Hydrogen Production Plants for Building Sustainable Energy Systems (지속 가능한 에너지 시스템 구축을 위한 전기분해 수소 생산 플랜트 초기 건설비용 예측)

  • SUNGWOOK KANG;JOONHEON KIM;JONGHWA PARK;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Hydrogen serves as a clean energy source with potential applications across various sectors including electricity, transportation, and industry. In terms of policy and economic support, governmental policy backing and economic incentives are poised to accelerate the commercialization and expansion of hydrogen energy technologies. Hydrogen energy is set to become a cornerstone for a sustainable future energy system. Additionally, when constructing hydrogen production plants, economic aspects must be considered. The essence of hydrogen production plants lies in the electrolysis of water, a process that separates water into hydrogen and oxygen using electrical energy. The initial capital expenditure (CAPEX) for hydrogen production plants can vary depending on the electrolysis technology employed. This study aims to provide a comprehensive understanding of hydrogen production technologies as well as to propose a method for predicting the CAPEX of hydrogen production plants.