DOI QR코드

DOI QR Code

Techno-economic Analysis(TEA) on Hybrid Process for Hydrogen Production Combined with Biomass Gasification Using Oxygen Released from the Water Electrolysis Based on Renewable Energy

재생에너지기반 수전해 생산 수소와 바이오매스 가스화 하이브리드 공정의 기술 경제성 분석

  • Park, Sungho (Plant engineering center, Institute of Advanced Engineering(IAE)) ;
  • Ryu, JuYeol (Plant engineering center, Institute of Advanced Engineering(IAE)) ;
  • Sohn, Geun (Plant engineering center, Institute of Advanced Engineering(IAE))
  • 박성호 (고등기술연구원 플랜트엔지니어링 센터) ;
  • 류주열 (고등기술연구원 플랜트엔지니어링 센터) ;
  • 손근 (고등기술연구원 플랜트엔지니어링 센터)
  • Received : 2020.08.07
  • Accepted : 2020.10.26
  • Published : 2020.10.31

Abstract

To reduce the hydrogen production cost through the utilizing the oxygen and improving the capacity factor of water electrolysis used to energy storage of renewable energy, the hybrid hydrogen production process which has dual operating concept of using the water electrolysis as energy storage and oxygen production process for biomass gasification was proposed. Moreover, Techno-economic analysis on this system was quantitatively performed.

본 연구에서는 재생에너지원의 에너지저장기술(Power to gas, P2G)로써 활용되는 수전해기의 가동률 향상과 산소 이용 극대화를 통해 경제성을 확보하기 위해서 수전해기에서 배출되는 산소를 바이오매스 가스화 공정에 공급하여 추가적인 수소 생산을 통해 수소 원가를 감소시키고, 재생에너지원의 출력 감소 시 수전해기를 바이오매스 가스화 공정의 산소 제조/공급 장치로 활용하는 공정을 제안하고, 이에 대한 정량적인 효율 분석과 경제성 분석을 수행하였다.

Keywords

References

  1. Kim, H. T., and Jhang, S. S., "Key Technologies for Stabilization of Power System for Successful Achievement of 3020 Renewable Energy Policy", The Transaction of the Korean Institute of Electrical Engineers, 67(2), 149-157,(2018) https://doi.org/10.5370/KIEE.2018.67.2.149
  2. Ko, A. R., Park, S. H., and Kim, S. H., "The economic feasibility analysis of 100MW Power-toGas system", Clean Technology, 26(1), 55-64, (2020)
  3. Gotz, M., Lefebvre, J., Mors, F., Koch, A. M., Graf, F., Bajohr, S., Reimert, R., and Kolb, T., "Renewable Power-to-Gas: A technological and economic review", Renewable Energy, 85, 1371-1390, (2016) https://doi.org/10.1016/j.renene.2015.07.066
  4. International Energy Agency(IEA), "The future of hydrogen", (2019)
  5. Herdem, M. S., Farhad, S., Dincer, I., and Hamdullahpur, F., "Thermodynamic modeling and assessment of a combined coal gasification and alkaline water electrolysis system for hydrogen production", International Journal of Hydrogen Energy, 39(7), 3061-3071, (2014) https://doi.org/10.1016/j.ijhydene.2013.12.068
  6. Kiros, Y., Marini, S., Villa, M., and Nelli, P., "Hydrogen Through Water Electrolysis and Biomass Gasification for Application in Fuel Cells", Renewable Energy and Sustainable Development (RESD), 3(1), 164-165, (2016)
  7. Wagner, H., Wulf, C., and Kaltschmitt, M., "Polygeneration of SNG, heat and power based on biomass gasification and water electrolysis-concepts and their assessment", Biomass Conversion and Biorefinery, 5(1), 103-114, (2015)
  8. Pan, Z., Chan, W. P., Veksha, A., Giannis, A., Dou, X., Wang, H., Lisak, G., and Lim, T, T., "Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation", Energy Conversion and Management, 202(15), 1-13, (2019)
  9. Yao, J., Kraussler, M., Benedikt, F., and Hofbauer, H., "Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes", Energy Conversion and Management, 145, 278-292, (2017) https://doi.org/10.1016/j.enconman.2017.04.084
  10. Park, S. H., Chung, S. W., Lee, S. K., Choi, H. K., and Lee, S. H., "Thermo-economic evaluation of 300 MW class integrated gasification combined cycle with ash free coal (AFC) process", Applied Thermal Engineering, 89, 843-852, (2015) https://doi.org/10.1016/j.applthermaleng.2015.06.066
  11. Kremling, M., Briesemeister, L., Gadere, M., Fendt, S., and Spliethoff, H., "OXygen-Blown Entrained Flow Gasification of Biomass: Impact of Fuel Parameters and Oxygen Stoichiometric Ratio", Energy Fuels, 31(4), 3949-3959, (2017) https://doi.org/10.1021/acs.energyfuels.6b02949
  12. ASPEN HYSYS V.10, ASPEN Technology Inc, (2019)
  13. Biaku, C. Y., Dale, N. V., Mann, M. D., Salehfar, H., Peters, A. J., and Han, T., "A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer", Internation Journal of Hydrogen Energy, 33(16), 4247-4254, (2008) https://doi.org/10.1016/j.ijhydene.2008.06.006
  14. Dale, N. V., Mann, M. D., and Salehfar, H., "Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics", Journal of Power Source, 185(2), 1348-1353, (2008) https://doi.org/10.1016/j.jpowsour.2008.08.054
  15. Harrison, K. W., Pacheco, E. H., Mann, M. D., and Salehfar, H., "Semiempirical Model for Determining PEM Electrolyzer Stack Characteristics", Journal of Fuel Cell Science and Technology, 3(2), 220-223, (2006) https://doi.org/10.1115/1.2174072
  16. Harrison, K. W., Pacheco, E. H., Mann, M. D., and Salehfar, H., "Semiempirical Model for Determining PEM Electrolyzer Stack Characteristics", Journal of Fuel Cell Science and Technology, 3(2), 220-223, (2006) https://doi.org/10.1115/1.2174072
  17. National Energy Technology Laboratory(NETL), "Cost and performance baseline for fossil energy plants Volume 1 : Bituminous coal and natural gas to electricity", (2010)
  18. National Energy Technology Laboratory(NETL), "Capital cost scaling methodology : Revision 3 Reports and prior" (2019)