DOI QR코드

DOI QR Code

Introductions for Foreign PEM Systems and It's Field Test Plan Linked to Renewable Energy in Jeju Island

국외 PEM 수전해시스템 도입 및 제주도 재생에너지 연계 실증방안

  • Sangyup Jang (Hydrogen technology research center, Gas research institute, KOGAS) ;
  • Jaedong Kim (Hydrogen technology research center, Gas research institute, KOGAS) ;
  • Dongmin Kim (Hydrogen technology research center, Gas research institute, KOGAS) ;
  • Jinmo Park (Hydrogen technology research center, Gas research institute, KOGAS) ;
  • Youngseuk So (Hydrogen technology research center, Gas research institute, KOGAS)
  • 장상엽 (한국가스공사 가스연구원 수소기술연구소) ;
  • 김재동 (한국가스공사 가스연구원 수소기술연구소) ;
  • 김동민 (한국가스공사 가스연구원 수소기술연구소) ;
  • 박진모 (한국가스공사 가스연구원 수소기술연구소) ;
  • 소영석 (한국가스공사 가스연구원 수소기술연구소)
  • Received : 2022.11.10
  • Accepted : 2023.01.06
  • Published : 2023.03.31

Abstract

Efforts by each country to solve the climate change problem continue, and the transition to eco-friendly fuels is a task for mankind to continue. Recently, Jeju Island, where renewable energy resources are relatively abundant, is preparing to demonstrate the technology to produce green hydrogen linked to renewable energy and this study aims to introduce and apply polymer electrolyte water electrolysis devices of advanced foreign companies after comparing domestic and foreign technologies. This study aims to solve domestic safety regulations for water electrolysis devices manufactured overseas and system introduction process and evaluation method of core components.

기후변화 문제를 해결하기 위한 각국의 노력은 계속되고 있고, 친환경 연료로의 전환은 지속적으로 진행해야 할 인류의 과제이다. 국내에서는 최근 재생에너지자원이 비교적 풍부한 제주도에서 재생에너지와 연계한 그린수소를 생산하는 기술을 실증하기 위하여 준비 중이며, 본 연구에서는 국내외 기술현황을 파악 후 해외선진기업의 고분자 전해질 수전해 장치를 도입하여 적용하는 것을 목표로 하고 있다. 본 연구를 진행하면서 국외에서 제작되는 수전해 장치에 대하여 국내안전규제에 부합한 시스템 도입과정과 핵심부품의 평가방법을 소개하고자 한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 그린수소생산 및 저장시스템 기술개발(과제번호: 20208801010010)사업으로 수행되었습니다.

References

  1. Jeju report, Carbon Free Island 2030, (2019)
  2. Korea Power Exchange (KPX), Electric Power Statistics Information System, (2021)
  3. Jeon, W.Y., Kim, J.Y., Lee, S.W., "Establishing an efficient low-carbon power system by reducing curtailment of renewable energy using ESS", Journal of Climate Change Research, 13(1), 1-9, (2022) https://doi.org/10.15531/KSCCR.2022.13.1.001
  4. J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert, and T. Tynjala, Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation, Appl. Energy., 257, 113967, (2020).
  5. H. Blanco, and A. Faaij, "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage", Renew. Sustain. Energy Rev., 81, 1049-1086 (2018). https://doi.org/10.1016/j.rser.2017.07.062
  6. FCH JU, Commercialization of energy storage in Europe, Final report, (2015).
  7. Buttler, A., Spliethoff, H., "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review", Renewable and Sustainable Energy Reviews, 82, 2440, (2018).
  8. Park J.H., Kim C.H., Cho H.S., Kim S.K., and Cho W.C., "Techno-economic analysis of green hydrogen production system based on renewable energy sources", Trans. of Korean Hydrogen and New Energy Society, 31(4), 337~344, (2020) https://doi.org/10.7316/KHNES.2020.31.4.337
  9. Lee J.Y., Yi Y.M., and Uhm S.H, "Understanding underlying processed of water electrolysis", J. Korean Ind. Eng. Chem., 19(4), 357-365, (2008)
  10. Seo D.H., Rhie K.W., and Kim T.H., "A study on the analysis of hazardous risk factors for component in hydrogen station with water elelctolysis device", J. of Korea Institute of Gas, 23(6), 33-36, (2019)
  11. ISO 22734, Hydrogen generators using water electrolysis, (2019)
  12. PED 2014-68-EU, (2014)
  13. Plug-power electrolyzer spec sheet, https://plugpower.com, (2022)