• Title/Summary/Keyword: 수온역전

Search Result 24, Processing Time 0.024 seconds

Inversion Phenonena of Temperature Off East Cheju Island in Summer , 1986 (1986년 하계 제주도 동부 해역의 수온 역전 현상)

  • Jo, Gyu-Dae;Park, Seong-U
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.265-274
    • /
    • 1990
  • The temperature inversions were studied on the basis of Digital Memory Bathythermography(DBT) data collected by training ship, Pusan 402, of the National Fisheries University of Pusan in August 23~25, 1986 and Fisheries Reserach and Development Agency of Korea in August, 1986, The results were as follows; Among the 67 stations of studied area, occurrence frequency of temperature inversion was 58.20%, And the frequency of onefold occurrence of temperature inversion at its profile of each station was 13.42%. of twofold occurrence was 20.80%, and of threefold occurrence was 23.88%. In the studied area, the temperature inversion usually occurred below the 40m depth and its layers also located below the thermocline. The temperature range of its inversion was from 14$^{\circ}C$ to 16$^{\circ}C$. The temperature inversion in the study area was oaused by the interaction between Tsushima Warm Current and Korea Coastal Waters.

  • PDF

Temperature Inversion off Wasaka Bay in the East Sea, June of 1995 and 1996

  • Lee Chung-Il;Cho Kyu-Dae;Yun Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.55-59
    • /
    • 2004
  • Temperature inversion off Wasaka Bay in the East Sea was studied using data measured on a CREAMS cruise in June of 1995 and 1996. Temperature inversion occurred mainly at the upper layer of the thermocline at a depth of no more than 20 m and around the thermal front between the TWC and the coastal waters of Japan. At some stations. temperature inversion had an influence un density inversion, while, in some other stations, high salinity water prevented density inversion.

  • PDF

ON THE GENERATION OF TEMPERATURE INVERSIONS IN THE UPPER LAYER OF THE OCEAN (해양 표층 수온 역전의 원인)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 1983
  • Oceanic temperature inversions, with unstable stratifications, are frequently founed in the surface layer of a few tens meters in the Japan Sea and the Yellow Sea in Winter. Mechanisms responsible for the generation of temperature inversions include the followings: (1) The nat heat loss at the sea suface requires an upward transport of heat from the interior of the ocean y convection, and this convection leads to the temperature inversions. (2) The downward propagation of the annual variation of the sea surface timperature, with an exponential decrease of amplitude and a linear change of phase with depth, generates the surface inversion layer in winter. (3) The cold water cdvection by Ekman drift, of which magnitude decreases exponentially with depth, generates temperature inversions for the three possible mechanisms mentioned above.

  • PDF

Effects of Water Temperature Inversion on the Stratification Variation in October and December in the South Sea of Korea (한국 남해에서 10월과 12월의 수온역전현상이 성층변동에 미치는 영향)

  • Lee, Chung-Il;Koo, Do-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • In order to illustrate the effects of water temperature inversion on the stratification variation in the South Sea of Korea, water temperature, salinity, and density measured in October and December 1999 by National Fisheries Research and Development Institute were reviewed. In October and December of 1999, temperature inversion occurred mainly between 25m and 75m, and in particular in depth of water, in December temperature inversion layer also was formed in the surface layer. In case of October and December, the Tsushima Warm Current (TWC), warm and saline water, was one of motors, and in December, influence of surface cold water was added Although northerly wind prevails in October and December, in October, expanding of the South Korean Coastal Waters (SKCW) towards offshore is not clear, but in December when wind speed is relatively greater than that in October and strength of the TWC become weak, the SKCW spreads towards offshore through the upper layer. Stratification variation was higher along the area where temperature inversion occurred.

  • PDF

Temperature inversions observed in April in the eastern Yellow Sea (황해동부에서 4월에 관측 수온역전)

  • LEESANGHO
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.259-267
    • /
    • 1992
  • A survey of CTD casting was taken in April 1991 in the eastern Yellow Sea. The vertical structure of water column consists of the upper mixed warm, the mid cold and the lower warm layers devised clearly by a seasonal thermocline and the temperature inversion. A strongest temperature inversion is found in the southern part of the survey area. Where the low-layer water is $3^{\circ}C$ higher than the mid-layer water. The area of the temperature inversion covers about $100{\;}km{\;}{\times}{\;}100{\;}km$ and it is observed 1.5 month later. The temperature and salinity of the low-layer water shows a core structure in vertical sections and the tongue-like distribution extending from the south to the north, implying that the warm and saline water found in the oceanic front south of the survey area in early spring is advocated to the north over 150 km underneath the Yellow Sea cold water.

  • PDF

Inversion Phenomena of Temperature in the Southern Sea of Korea (한국 남해의 수온역전현상)

  • KIM Hee-Joon;YUG Sang-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • Temperature inversions are investigated by using the oceanographic data (1965-1979) obtained in the Southern Sea of Korea. The temperature inversions in winter occur about six times more frequently than those in sumner. In the west region of the Southern Sea, the inversions are found at any depth in winter. In the east region of the Southern Sea, however, they usually appear in surface layer in winter. Such inversion phenomena in winter can be explained by surface cooling effects associated with a net heat loss at the sea surface and a southward advection of surface cold water due to north-westerly monsoon. In summer the inversion layers are usually formed below the thermocline in the west region of the Southern Sea, and in surface layer in the east region. The former results from the mixing between the Tsushima Warm Current and the Yellow Sea Bottom Cold Water, and the latter is generated by an offshore flow of cold water near coast due to southwesterly wind.

  • PDF

Inversion Phenomena of Temperature in the Yellow Sea (한국 서해의 수온역전 현상)

  • Kim, Hui-Jun;Yun, Hong-Ju;Yang, Seong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 1982
  • Temperature inversions are investigated by using the oceanographic data obtained in the Yellow Sea from 1965 to 1979. The temperature inversions are found in every depth in almost all areas of the Yellow Sea. While in summer, they frequently occur below thermocline in the west region of the Jeju Island. Such phenomena in winter can be explained by surface cooling effects associated with a net heat loss at the surface and a southward advection of cold water, and those in summer result from the process of mixing between the Yellow Sea Warm Current and the Yellow Sea Bottom Cold Water.

  • PDF

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

Improvement of the accuracy of XBT based underwater sound speed using the unmanned maritime system and satellite remote sensing data in the Yellow Sea (해양무인체계와 위성 원격탐사 자료를 이용한 XBT 기반의 황해 수중음속 정확도 향상 방안)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.621-629
    • /
    • 2019
  • A logical measure is suggested to estimate an accurate Sound Speed Profile (SSP) for the unusual variation of salinity in the Yellow Sea. Based on National Aeronautics and Space Administration (NASA)'s Aqua and Soil Moisture Active Passive (SMAP) satellite data, this measure identifies the area of temperature inversion effect and expansion of low salinity (<30.5 psu) water. Subsequently, on the area, the Conductivity, Temperature, and Depth (CTD) mounted unmanned maritime system estimates accurate SSP. In order to carry out this measure conveniently, a flow chart is demonstrated in this research. By using this measure which finds the high variational salinity area, the inaccuracy issue for calculating SSP from Expandable Bathy Thermograph (XBT) is expected to be solved.

The Impacts of the Chungju Lake on the Fog Chracteristics of Its Surrounding Area (충주호가 주변지역의 안개 특성에 미친 영향 -충주와 제천을 중심으로-)

  • 이승호
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.2
    • /
    • pp.165-177
    • /
    • 1998
  • 본 연구에서는 충주호가 그 주변지역의 안개 특성 변화에 미친 영향을 파악하고자 하였다. 충주호 하류에 위치하는 충주와 상류의 제천지역을 사례로 안개일수, 안개 발생.소산시각, 안개 발생 전일의 바람과 일교차 및 기압배치, 상층의 바람 등을 분석하였다. 충주댐 건설 후 두 지역의 안개일수가 크게 증가하였는데, 제천에서는 상대습도와 수증기압이 증가하였으나 충주의 경우는 감소하였다. 또한 충주지역에서는 안개 발생시각이 빨라졌는데, 북서풍계 바람이 불 경우 더욱 뚜렷하며 안개의 빈도도 증가하였다. 안개 소산시각은 충주에서는 빨라졌으나 제천에서는 늦어졌다. 일교차는 충주에서는 감소하였고, 제천지역에서는 증가하였다. 제천의 안개 증가가 충주호에서 공급되는 수증기에 의한 것인데 반하여, 충주의 그것은 방류수의 수온과 기온 차이에 의한 것이다. 이에 따라 충주에서는 동절기에는 증발현상에 의한 안개가, 하절기에는 수면에서의 기온역전에 의한 안개가 크게 늘었다.

  • PDF