Browse > Article
http://dx.doi.org/10.7776/ASK.2021.40.3.183

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea  

Kil, Bum-Jun (Naval War College)
Abstract
A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.
Keywords
Array for Real-time Geostrophic Oceanography (ARGO) float; Underwater sound speed; Sound channel; Temperature inversion effect;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. H. Byun, S. M. Kim, and Y. K. Lim, " Long-range sound transmission characteristics in shallow-water channel with thermocline" (in Korean), J. Acoust. Soc. Kr. 33, 273-281 (2014).   DOI
2 ARGO NIMS, http://argo.nims.go.kr/argo3/argo-nims.html?lang=kr, (Last viewed February 1, 2021).
3 H. Medwin, "Speed of sound in water: A simple equation for realistic parameters," J. Acoust. Soc. Am. 58, 1318-1319 (1975).   DOI
4 R. P. Hodges, Underwater Acoustics: Analysis, Design and Performance of Sonar (John Wiley & Sons, West Sussex, 2010), Chap. 5.
5 Underwater Acoustics and Sonar Signal Processing, http://homepages.hs-bremen.de/~krausd/iwss/USP1.pdf, (Last viewed January 31, 2021).
6 S. H. Kim, " Characteristics of water temperature inversion observed in a region west of Jeju Island in April 2015" (in Korean), Ocean Polar Res. 42, 97-113 (2020).
7 M. B. Porter, The BELLHOP Manual and User's Guide: PRELIMINARY DRAFT (Heat, Light, and Sound Research, Inc, La Jolla, 2011), Chap. 2.
8 K. T. Seong, J. D. Hwang, I. S. Han, W. J. Go, Y. S. Suh, and J. Y. Lee, "Characteristic for long-term trends of temperature in the Korean waters" (in Korean), J. Korean Soc. Mar. Environ. Saf. 16, 353-360 (2010).
9 J. Hao, Y. Chen, and F. Wang, "Temperature inversion in China seas," J. Geophys. Res. Oceans. 115, C12025 (2010).   DOI
10 S. Nam, Y. B. Kim, J. J. Park, and K. I. Chang, "Status and prospect of unmanned, global ocean observations network" (in Korean), J. Korean Soc. Oceanogr. 19, 202-214 (2014).
11 R. Pinkel, M. A. Goldin, J. A. Smith, O. M. Sun, A. A. Aja, M. N. Bui, and T. Hughen, "The wirewalker: A vertically profiling instrument carrier powered by ocean waves," J. Atmos. Oceanic Technol. 28, 426-435 (2011).   DOI
12 A. J. Lucas, R. Pinkel, and M. Alford, "Ocean wave energy for long endurance, broad bandwidth ocean monitoring," Oceanogr. 30, 126-127 (2017).
13 H. Kwon, J. Kim, J. W. Choi, D. Kang, S. Cho, S. K. Jung, and K. Park, "Spatial coherence analysis of underwater ambient noise measured at the Yellow Sea" (in Korean), J. Acoust. Soc. Kr. 34, 432-443 (2015).   DOI
14 J. J. Park,"Underwater glider: Its applicability in the East/Japan Sea" (in Korean), Ocean Polar Res. 35, 107-121 (2013).   DOI
15 T. Moh, N. Jang, S. Jang, and J. H. Cho, "Application of a winch-type towed acoustic sensor to a wave-powered unmanned surface vehicle," Def. Sci. J. 67, 125 (2017).   DOI
16 Y. B. Son, T. Moh, S. K. Jung, J. D. Hwnag, H. Oh, S. H. Kim, J. H. Ryu, and J. H. Cho, "Status of ocean observation using wave glider" (in Korean), KJRS. 34, 419-429 (2018).
17 S. H. Kim, B. N. Kim, B. K. Choi, and E. Kim, "Comparison of acoustic wave propagation patterns according to the shape of water temperature inversion layer," Proc. Korean Soc. Noise Vib. Eng. 296 (2017).
18 K. H. Oh, Assessment of profiles and intermediate to deep level circulation of the southern part of the East Sea from Argo floats, (Ph.D. thesis, Jeju National University, 2005).
19 K. Kim, Y. B. Kim, J. J. Park, S. Nam, K. A. Park, and K. I. Chang, "Long-term and real-time monitoring system of the East/Japan Sea" (in Korean), Ocean Sci. J. 40, 25-44 (2005).   DOI
20 Y. H. Yun, Y. H. Park, and J. H. Bong, "Enlightenment of the characteristics of the Yellow Sea bottom cold water and its southward extension" (in Korean), J. Korean Earth Sci. Soc. 12, 25-37 (1991).
21 H. Song, C. Cho, W. Hodgkiss, S. Nam, S. M. Kim, and B. N. Kim, "Underwater sound channel in the northeastern East China Sea," Ocean Eng. 147, 370-374 (2018).   DOI
22 P. C. Chu, C. Cintron, S. D. Haeger, and R. E. Keenan, "Acoustic mine detection using the Navy's CASS-GRAB," Proc. 5th Int. Symp. on Technology and Mine Problem, Soc. 1-10 (2002).
23 H. J. Kim, H. J. Yun, and S. G. Yang, "Inversion phenomena of temperature in the Yellow Sea" (in Korean), Bull. Korean Fish. Tech. Soc. 18, 91-96 (1982).
24 N. Jeong, B. Natsagdor, and H. Jung, "LTE based high-speed maritime wireless communication (LTE-M) router system" (in Korean), J. Korea Inst. Inf. Commun. Eng. 22, 542-547 (2018).   DOI
25 H. J. Lie, C. H. Cho, and K. T. Jung, "Occurrence of large temperature inversion in the thermohaline frontal zone at the Yellow Sea entrance in winter and its relation to advection," J. Geophys. Res. Oceans, 120, 417-435 (2015).   DOI
26 S. H. Kim, B. N. Kim, E. Kim, and B. K. Choi, "Effects of water temperature inversion layer on underwater sound propagation in the East China Sea," Proc. Symposium on Ultrasonic Electronics, 2P6-2 (2016).
27 R. Oh, Y. Kim, H. R. Kim, J. W. Choi, and W. K. Kim, "Analysis of detection performance of hull mounted sonar in sound-speed inversion layer in the Yellow Sea" (in Korean), Proc. KIMST Annual Conf. 345 (2019).
28 T. G. Jung, H. L. Ko, Y. H. Cho, and T. H. Im, "Underwater communication system implementation for underwater objects internet" (in Korean), Proc. KICS Winter Conf. 1241-1242 (2019).
29 S. T. Jang, J. H. Lee, C. H. Kim, C. J. Jang, and Y. S. Jang, "Movement of cold water mass in the northern East China Sea in summer" (in Korean), J. Korean Soc. Oceanogr. 16, 1-13 (2011).
30 D. Y. Jeong, S. M. Kim, S. H. Byun, and Y. K. Lim, "A study on the characteristics of underwater sound transmission by short-term variation of sound speed profiles in shallow-water channel with thermocline" (in Korean), J. Acoust. Soc. Kr. 34, 20-35 (2015).   DOI