• Title/Summary/Keyword: 수동형

Search Result 457, Processing Time 0.022 seconds

Directivity Pattern Design of a Vehicle Tag Antenna for Improvement of the Readable Range (인식 거리 개선을 위한 차량용 태그 안테나의 지향성 설계)

  • Park, Dae-Hwan;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.872-879
    • /
    • 2010
  • This paper describes the design for radiation pattern directivity of vehicle license plate RFID tag antenna to improve the readable range. Directivity pattern of the proposed passive antenna is decided by the meander line position and the bumper size attached to the tag antenna. In order to prove the verification of the calculated directivity pattern and readable range of the proposed antenna, the tag antenna has been fabricated and measured at the anechoic chamber. It is shown that the maximum directivity gain of the measured radiation pattern of active and passive tag antenna were observed 2.32 dBi and 3.1 dBi, respectively. The maximum readable range of passive tag antenna was measured about 8.5 m at ${\pm}45^{\circ}$ beam direction on the basis of the driving car direction($0^{\circ}$ of azimuth angle).

A Novel Hybrid Balun Circuit for 2.4 GHz Low-Power Fully-differential CMOS RF Direct Conversion Receiver (2.4 GHz 저전력 차동 직접 변환 CMOS RF 수신기를 위한 새로운 하이브리드 발룬 회로)

  • Chang, Shin-Il;Park, Ju-Bong;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.86-93
    • /
    • 2008
  • A low-power, low-noise, highly-linear hybrid balun circuit is proposed for 2.4-GHz fully differential CMOS direct conversion receivers. The hybrid balun is composed of a passive transformer and loss-compensating auxiliary amplifiers. Design issues regarding the optimal signal splitting and coupling between the transformer and compensating amplifiers are discussed. Implemented in $0.18{\mu}m$ CMOS process, the 2.4 GHz hybrid balun achieves 2.8 dB higher gain and 1.9 dB lower noise figure than its passive counterpart and +23 dBm of IIP3 only at a current consumption of 0.67 mA from 1.2 V supply. It is also examined that the hybrid balun can remarkably lower the total noise figure of a 2.4 GHz fully differential RF receiver only at a cost of 0.82 mW additional power dissipation.

Design of Control Block for Passive UHF RFID Tag IC (수동형 UHF대역 RFID 태그 IC의 제어부 설계)

  • Woo, Cheol-Jong;Cha, Sang-Rok;Kim, Hak-Yun;Choi, Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.41-49
    • /
    • 2008
  • This paper presents a design of the control block of a passive UHF RFID tag IC according to EPCglobal Class-1 Generation-2 UHF RFID 1.1.0 Protocol. The control block includes a PIE block, CRC5/CRC16, a Slot Counter, a Random Number Generator, a Main Control Block, a Encoder and a Memory Interface. The control block has been designed using the Verilog HDL and has been simulated. Functional simulation results for the overall control block operation show that 11 instructions with 7 states are operated correctly. Also, the control block has been implemented with 36,230 gates by Synopsys Design Compiler and Apollo using Magnachip 0.25$\mu$m technology.

Elementary MAC Scheme Based on Slotted ALOHA for Wireless Passive Sensor Networks (무선 수동형 센서 망을 위한 Slotted ALOHA 기반의 기본적인 MAC 방식)

  • Choi, Cheon Won;Seo, Heewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • A wireless passive sensor network is a network which, by letting RF sources supply energy to sensor nodes, is - at least theoretically - able to live an eternal life without batteries. Due to the technological immaturity, however, a wireless passive sensor network still has many difficulties; energy scarcity, non-simultaneity of energy reception and data transmission and inefficiency in data transmission occurring at sensor nodes. Considering such practical constraints, in this paper, we propose an elementary MAC scheme supporting many sensor nodes to deliver packets to a sink node. Based on a time structure in which a charging interval for charging capacitors by using received and an acting interval for communicating with a sink node are alternately repeated, the proposed MAC scheme delivers packets to a sink node according to slotted ALOHA. In general, a contention-type scheme tends to exhibit relatively low throughput. Thus, we multilaterally evaluate the throughput performance achieved by the proposed MAC scheme using a simulation method. Simulation results show that the network-wide throughput performance can be enhanced by properly setting the length of acting interval.

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.

Proactive Network Optimizer for Critical Applications (크리티컬한 응용을 위한 능동형 네트워크 최적화기)

  • Park, Bongsang;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1250-1256
    • /
    • 2018
  • Recently, wireless networks are becoming an important infrastructure for the critical large-scale applications such as cyber-physical systems and next generation industrial automations. However, the fundamental performance uncertainty of wireless networks may incur the serious instability problem of the overall systems. This paper proposes the proactive network optimizer to guarantee the application demands without any real-time link monitoring information of the networks. In particularly, the proposed proactive optimizer is the cross-layer approach to jointly optimize the routing path and traffic distribution in order to guarantee the performance demand within a maximum k number of link faults. Through the simulations, the proposed proactive network optimizer provides better robustness than the traditional existing reactive networks. Furthermore, the proactive network does not expose to the major weakness of the reactive networks such as the performance degradation due to the erroneous link monitoring information and the network reconfiguration cost.

Characterization of Passive Direct Methanol Fuel Cells (수동형 직접 메탄올 연료전지의 특성 연구)

  • Kho, B.K.;Kim, Y.J.;Oh, I.H.;Hong, S.A.;Ha, H.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • In this study investigations have been carried out for the evaluation of small DMFCS under passive operation conditions for use in portable powers. Under passive conditions, a maximum performance was obtained at a methanol concentration of 4 M and at a catalyst loading of $8mg/cm^2$ on both electrodes. By optimizing various parameters, we could achieve the highest performance of $55mW/cm^2$ at 1 attn and at R.T.A monopolar stack consisting of 6 unit cells with active area of $4.5cm^2/cell$ was prepared and it showed a uniform voltage distribution all over the cells and it had a power output of 1 watt and a power density of $37mW/cm^2$ A monopolar stack which consisted of 16 cells and produced a 2.4W power was also fabricated and was tested for operation of a miniature car.

Usability Improvement of BIM for Construction Projects Using Active BIM Functions (능동형 BIM 체계에 의한 토목 및 건축분야 BIM 활용성 개선 연구)

  • Kang, Leen-Seok;Moon, Hyun-Seok;Kim, Hyeon-Seung;Kwak, Joong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.74-83
    • /
    • 2013
  • Most current BIM systems are focused on the visual information of work status in the design and construction stages. In a passive BIM system, 3D CAD tool can visualize the interference elements of design drawings, however, it cannot suggest a solution to solve the interference status. And 4D CAD tool in the construction stage can simulate the appearance of each activity by construction schedule, however, it cannot suggest an optimized schedule plan considering specified schedule condition of the project. Recently, many organizations need BIM solutions that can improve the work status beyond the level of simple visual information from BIM system. Active BIM system can provide the solutions to the project manager. This study suggests active BIM functions for the solutions and attempts to develop a 4D CAD engine to validate the usability of the functions.