• Title/Summary/Keyword: 손상도 예측

Search Result 839, Processing Time 0.029 seconds

Impact of a Large Water Control on Environment of Surrounding Cultural Heritage (대규모 치수(治水) 사업이 주변 문화재 환경에 미치는 영향)

  • Jeong, Seon Hye;Kim, Si Hyun;Han, Ye Bin;Lee, Min Young;Lee, Hyun Ju;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.395-402
    • /
    • 2016
  • The impact of a large water control project on surrounding environment(temperature and relative humidity, precipitation, wind speed, present weather and visibility) was monitored. The survey have targeted on Silleuksa temple which is located in the waterside. The number of foggy days emerged as an environmental factor that can cause damage to cultural heritage. Under construction of weir since 2011, monthly relative humidity of Yeoju and Icheon was dropped to 9.6%. It depends on decrease in the number of raining days and precipitation of each year. Silleuksa temple is contiguous to Namhan River and only 100 m away from the waterside. Average wind speed is 0.5 m/s. Silleuksa has a site environmental factors which is often foggy. The number of foggy days of Silleuksa temple declined to 53 days soon after weir's completion. In case of fog, relative humidity of outside was higher than that of outside and inside of Josadang Shrine. Relative humidity difference of outside and inside of Josadang Shrine was 5.4% on average. Relative humidity of the number of foggy days is 6.3% higher on average than that of fine days. The width and dimensions of Namhan River increased by 1.45 times after weir's construction. It can change the number of foggy days. A long-term monitoring is positively necessary on fog occurrence and relative humidity.

Tunnelling in Bangkok - Two Case Studies (방콕의 터널공사 - 두 개의 사례연구)

  • Teparaksa, Wanchai;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.153-163
    • /
    • 2005
  • This paper presents two case studies for tunnelling in Bangkok: a subway tunnel site and a flood diversion tunnel site. The first case study is related to ground displacement response for dual tunnel Bangkok MRT subway. The MRT subway project of Bangkok city consists of dual tunnels about 20 km long with 18 subway stations. The tunnels are seated in the firm first stiff silty clay layer between 15-22 m in depth below ground surface. The behavior of ground deformation response based on instrumentation is presented. The back analysis based on plain strain FEM analysis is also presented and agrees with field performance. The shear strain of FEM analysis is in the range of 0.1-1% and in accordance with the results of self boring pressuremeter tests. Meanwhile, the second case study is related to the EPB tunnelling bored underneath through underground obstruction. The Premprachakorn flood diversion tunnel is the shortcut tunnel to divert the flood water in rainy season into the Choapraya river. The tunnel was bored by means of EPB shield tunnelling in very stiff silty clay layer at about 20-24 m in depth. During flood diversion tunnel bored underneath the existing Bangkok main water supply tunnel and pile foundation of the bridge, instrumentation was monitored and compared with predicted FEM analysis. The prevention risk potential by means of predicting damage assessment is also presented and discussed.

  • PDF

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.

Cavitation Analysis on Ship Seawater Pump Using CFD (CFD를 이용한 선박용 해수펌프의 공동현상에 대한 분석)

  • Kim, Bu-Gi;Kim, Hong-Ryeol;Yang, Chang-Jo;Kim, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.400-406
    • /
    • 2017
  • The model used in this study was reversed to analyze the cause of excessive damage that occurred inside the rotating system and pipe system of a centrifugal-type seawater pump on a ship. For this purpose, internal flow analysis on a cooling seawater pump was performed using CFD. As a result, the shape and boundary conditions of the target pump were set by reverse engineering, and pump efficiency at a design operating point of $125m^3/h$ was calculated as 85.3 % with a head of 32.0 m. The maximum efficiency point of the target pump was estimated to be 86.2 % at $150m^3/h$, but this differed from the actual operating point. At $112.5m^3/h$, which was the lowest flow point, flow was unstable due to the characteristics of the low flow point and analysis convergence was not good. The purpose of this study was to clarify the cause of ongoing cavitation in seawater pumps and piping systems in operation. Future research will be needed to clarify causes for pipe systems in the future by performing calculations for the total piping system of an inlet and outlet, in addition to measuring the flow rate of each branch pipe.

A Study of the Disaster Safety Management Systems on the Satellite Communication Networks for Solar Maximum (태양극대기 대비 위성통신망에 관한 재난안전관리시스템에 관한 연구)

  • Oh, Jongwoo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.78-85
    • /
    • 2012
  • This paper takes precautions proposals against prospective disasters from the space weather maximum in 2013. The space weather maximum could wreak havoc in this world. A geomagnetic space storm sparked by a solar eruption like the one that flared toward earth is bound to strike again and could wreak havoc across the modern world. Despite of the fact that not only researches by colleges and institutions current researches have been focusing on warning systems of space communication and the earth network systems, but also management and control systems are not situated for the space weather blasters. The purpose of the study is that the damage reduces methods implementation on the ultimate space weather communication systems by above lists proposed type analysis. In result, the implementation of the communication disaster management systems deals with the smart IT converged GIS analysis on the flare, solar proton event, geomagnetic storm to the effects of the geomagneticsphere, ionosphere and troposphere from solar maximum. This research can provide affective methods for the saving lives and property protections that implementation of the disaster prediction and disaster prevention systems adapts smart IT systems and converged high tech information systems using decision making support systems of the GIS methodology.

Seepage Behaviors of Enlargement Levee Containing Box Culvert Constructed on Soft Ground (연약지반에 설치된 배수통문을 포함하는 하천 보축제체의 수문 위치에 따른 침투 거동)

  • Yang, Hak-Young;Kim, Young-Muk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2018
  • In the case of the enlargement levee on the soft foundation, the existing levee and the enlargement levee connection can be damaged due to heterogeneous subsidence such as differential settlement at the joint of the box culvert passing through the levee. This study selected the downstream region of the Geum River and then confirmed the influence of the piping possibility on the levee by performing a 2D seepage analysis and analyzing the seepage tendency according to the position of the box culvert's gate. As a result, the flow velocity and the hydraulic gradient are larger in the upper breakage than the lower breakage, and the upper leak was more vulnerable to the piping than the lower leak. If leaks occur in the gate located on the riverside land, the risk of piping is increased when the water level rises and is maintained highly. In the case of the gate located on the inland, it could be predicted that the leakage could damage the stability of levee by increasing the water pressure inside the levee. As a result, if leakage occurs at any position in the box culvert, the pore water pressure is increased or decreased compared with the case when no leakage occurs. Therefore, if the pore water pressure is drastically reduced or increased compared with the normal case, leakage may occur. However, the result of this study is based on a 2D seepage analysis, and it is likely to be different from actual cases. Therefore, more detailed analysis by 3D analysis is recommended.

A Case Study on the Construction of the Sampling Frame and Sampling Design for 2008 Seoul Survey (2008 서울서베이 표본추출틀 구축 및 표본추출 사례 연구)

  • Kang, Hyun-Cheol;Park, Seung-Yeol;Kim, Jee-Youn;Kim, In-Soo;Lee, Dong-Su;Hwang, Ja-Eil;Park, Min-Gue
    • Survey Research
    • /
    • v.10 no.3
    • /
    • pp.157-172
    • /
    • 2009
  • For a survey research in which the characteristics of the population of interest are investigated from a sample, representativeness of the sampling frame is one of the most important part to be considered. If the sampling frame fails to represent the population properly, statistical procedures based on the even efficient sampling design result in significant nonsampling biases and thus the statistical validities of the results could be damaged. But the construction of the reliable sampling frame that covers the population properly costs money and time and thus the sampling frame based on a census or a large scale survey is often used in practice. For example, the sampling frame based on the population households census is used for many household surveys in Korea. But due to the time difference between the census and a survey of interest, the sampling frame constructed from the census is expected to fail to cover the population of interest. Especially, one could expect a large amount of population and household movement in a large city like Seoul. Thus in our research, we considered the construction of new sampling frame and the procedure of sample selection for 2008 Seoul survey. We analyzed the sampling frame based on 2005 population households census and found that it does not represent the population properly. Thus, we proposed a new sampling frame based on resident registration DB for 2008 Seoul survey. We also proposed the sampling weights and estimator of the population mean based on the sample selected from the newly constructed sampling frame.

  • PDF

Experimental Evaluation on Bond Strengths of Reinforcing Bar in Coils with Improved Machinability during Straightening Process (직선화 가공성을 고려한 코일철근의 실험적 부착강도 평가)

  • Chun, Sung-Chul;Choi, Oan-Chul;Jin, Jong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • A new deformation of reinforcing bar in coils was proposed to improve a machinability of straightening process, which has crescent-shaped transverse ribs with an inclination angle of 50 degrees, a crest width of $0.15d_b$, and a flank inclination of 55 degrees. The proposed deformation can increase contact area between a surface of re-bar and a groove of a roller during a straightening process and, therefore, it might reduce a damage of ribs, improve a final straightness, and enhance an efficiency of the straightening process. Splice tests were conducted to evaluate bond strengths of three types of re-bar in coils including the proposed re-bar, of which the inclination angles of transverse ribs were 50, 60, and 90 degrees, respectively. Test results show that the re-bars in coils have higher bond strengths than predicted strengths by equations of Orangun et al., ACI 408, and KCI by at least 10%. Correlation coefficients of bond strengths between a straight bar and re-bars in coils are 0.94 and more. Consequently, equations of the KCI code for determining development and splice lengths can be applied to the tested re-bars in coils.

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus (열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구)

  • Go, Eun-Su;Kim, Mun-Guk;Moon, Young-Sun;Kim, In-Gul;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

The study of Defense Artificial Intelligence and Block-chain Convergence (국방분야 인공지능과 블록체인 융합방안 연구)

  • Kim, Seyong;Kwon, Hyukjin;Choi, Minwoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.81-90
    • /
    • 2020
  • The purpose of this study is to study how to apply block-chain technology to prevent data forgery and alteration in the defense sector of AI(Artificial intelligence). AI is a technology for predicting big data by clustering or classifying it by applying various machine learning methodologies, and military powers including the U.S. have reached the completion stage of technology. If data-based AI's data forgery and modulation occurs, the processing process of the data, even if it is perfect, could be the biggest enemy risk factor, and the falsification and modification of the data can be too easy in the form of hacking. Unexpected attacks could occur if data used by weaponized AI is hacked and manipulated by North Korea. Therefore, a technology that prevents data from being falsified and altered is essential for the use of AI. It is expected that data forgery prevention will solve the problem by applying block-chain, a technology that does not damage data, unless more than half of the connected computers agree, even if a single computer is hacked by a distributed storage of encrypted data as a function of seawater.