• Title/Summary/Keyword: 손상구성모델

Search Result 162, Processing Time 0.029 seconds

Finite Element Analysis for Evaluating the Performance of RC Beams Strengthened with SFRP Coating (분사식 섬유보강 코팅으로 보강된 RC보의 성능평가를 위한 유한요소해석 연구)

  • Ha, Sung-Kug;Yang, Bum-Joo;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • In this paper, a series of finite element analyzes were carried out to evaluate the performance of the RC beams strengthened with sprayed fiber reinforced polymer(SFRP) coating. A damage constitutive model based on the micromechanical constitutive model(Lee, 2001) in conjunction with the damage models(Lee 등, 2000) for SFRP coating was implemented into the finite element code ABAQUS. The present prediction results were compared with experimental data(Ha, 2007; Ha 등, 2009) to assess the accuracy of the damage constitutive model. It was concluded from the comparative study that the computational model developed by implementing the damage constitutive model into ABAQUS is suitable for the prediction of the performance of RC beams strengthened with SFRP coating.

A Micromechanics based Elastic Constitutive Model for Particle-Reinforced Composites Containing Weakened Interfaces and Microcracks (계면손상과 미세균열을 고려한 입자강화 복합재료의 미세역학 탄성구성모델)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon;Kim, Hyeong-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • A constitutive model based on a combination of a micromechanics-based weakened interface elastic model (Lee and Pyo, 2007) and a crack nucleation model (Karihaloo and Fu, 1989) is proposed to predict the effective elastic behavior of particle-reinforced composites. The model specifically considers imperfect interfaces in particles and microcracks in the matrix. To exercise the proposed constitutive model and to investigate the influence of model parameters on the behavior of the composites, numerical simulations on uniaxial tension tests were conducted. Furthermore, the present prediction is compared with available experimental data in the literature to verify the accuracy of the proposed constitutive model.

Unified Constitutive Modeling for Low Temperature Austenitic Stainless Steel (저온용 스테인레스강의 통합 구성방정식)

  • Yoo, Seong-Won;Park, Woong-Sup;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.504-507
    • /
    • 2010
  • 본 논문에서는 저온용 오스테나이트계 스테인리스강(ASS)의 온도 및 변형률 속도의 영향을 고려한 통합 구성 방정식 및 손상 모델을 제안하였다. 저온 영역에서, 304L ASS의 온도 및 변형률 속도별 인장 실험을 시행하였다. 그 결과, 변형 유기 마르텐사이트 상변태에 의해 상변태 유기 소성(TRIP)이 저온에서 현저히 나타났으며 온도 및 변형률 속도의 영향이 지대하였다. 실험 결과를 바탕으로 ASS의 저온 거동 및 특성을 규명하여 수치 모델에 반영하였다. 저온에서 일어나는 2차 경화 현상을 표현하기 위해, Bodner/Partom 점소성 구성 방정식을 수정하고 Tomita/Iwamoto 변형 유기 상변태 모델을 구성 방정식에 적용시켰다. 저온 연성 파단 현상을 표현하기 위해, Bodner/Chan 손상모델을 수정하여 접목시켰다. 제안된 모델을 유한요소 프로그램에 탑재시키고, 온도 및 변형률 속도 의존 재료 정수를 결정하였다. 저온 영역에서, 온도 및 변형률 속도별 재료 거동을 시뮬레이션하고 이를 실험 결과와 비교 및 검증하였다.

  • PDF

Constitutive Equation for Concrete using Anisotropic Continuum Damage Model (이방성 손상모델을 이용한 콘크리트 구성방정식의 도출)

  • Lee, Ki Seong;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.751-759
    • /
    • 1994
  • Concrete contains numerous microcracks initially. The growth and propagation of microcracks cause failure of concrete. These processings are termed as "damage". The concepts of the continuum damage mechanics are presented and the damage evolution law and constitutive equation are derived by using the Helmholz free energy and the dissipation potential by means of the thermodynamic principles. The constitutive equation includes the effects of elasticity, damage and plasticity of concrete. The proposed model successfully predicts the nonlinear behavior of concrete subject to monotonic uniaxial and biaxial loadings.

  • PDF

고체 추진제의 비선형 점탄성 구성모델

  • 정규동;김봉규;윤성기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.5-5
    • /
    • 1997
  • 고체추진제에 대한 비선형 점탄성 구성모델이 제시되었다 추진제 손상의 원인으로서 바인더와 AP 충전제사이의 접착분리를 고려하였으며, 점탄성 드웨팅판별식이 개발되었다. 손상에 의한 추진제의 연화는 모듈러스 저하로서 취급되었으며, 모듈러스저하 계산시에 드웨팅에 의하여 야기된 미소진공구의 모듈러스는 유한 상수로서 간주되었다. 바인더와 AP 충전제사이의 접착에너지는 180$^{\circ}$ 접착박리시험으로 측정하였다. 반복하중시의 비선형성은 전단변형률 불변량의 함수로서 고려되었다. 이 구성모델은 여러 하중조건에 대한 시편실험과 비교되어 잘 일치하였으며, 복잡한 미시구조학적 역학기구 없이 간단하게 고체 추진제의 거동을 예측할 수 있게 한다.

  • PDF

Unified Constitutive Model for RC Planar Members Under Cyclic Load (주기하중을 받는 철근 콘크리트 면부재에 대한 통합구성모델)

  • 김재요;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.239-248
    • /
    • 2002
  • A constitutive model unifying plasticity and crack damage mode)s was developed to address the cyclic behavior of reinforced concrete planar members. The stress of concrete in tension-compression was conceptually defined by the sum of the compressive stress developed by the strut-action of concrete and the tensile stresses developed by tensile cracking. The plasticity model with multiple failure criteria was used to describe the isotropic damage of compressive crushing affected by the anisotropic damage of tensile cracking. The concepts of the multiple fixed crack damage model and the plastic flow model of tensile cracking were used to describe the tensile stress-strain relationship of multi-directional cracks. This unified model can describe the behavioral characteristics of reinforced concrete in cyclic tension-compression conditions, i.e. multiple tensile crack orientations, progressively rotating crack damage, and compressive crushing of concrete. The proposed constitutive model was implemented to finite element analysis, and it was verified by comparison with existing experimental results from reinforced concrete shear panels and walls under cyclic load conditions.

Elasto-Plastic Anisotropic-Damage Model for Concrete (콘크리트의 탄-소성 이방성-손상 모델)

  • 이기성;송하원
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • The initiation and growth of microcracks or microvoids inside concrete results in the progressive degradation of concrete. This damage processing along processing along with plastic deformation is main cause of nonlinear behavior of concrete. In this study, a continuum damage model of concrete is developed for the analysis of the nonlinear behavior of concrete due to damage and elasto-plastic deformation. Anisotropic damage tensor is used to describe the anisotropy of concrete and hypothesis of equivalent elastic energy is used to define the effective elastic tensor. The damage model including the damage evolution law and constitutive equation is derived with damage variable and damage surface which is defined by damage energy release rate by using the Helmholtz free energy and dissipation potential based on the thermodynamic principles. By adopting a typical plasticity model of concrete, plasticity of concrete is included to this model. Afinite element analysis program implemented with this model was developed and finite element analysis was performed for the analyses of concrete subjected to uniaxial and biaxial loadings. Comparison of the results of analysis with those of experiments and other models shows that the model successfully predicts the nonlinear behavior of concrete.

  • PDF

Constitutive Modeling of Asphalt Concrete with Time-Dependent Damage Growth (손상이 증가하는 아스팔트 콘크리트의 점탄성 구성모델)

  • 이현종
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.229-238
    • /
    • 1997
  • Mechanical behavior of asphalt concrete that accounts for viscoelasticity and damage evolution under cyclic loading conditions is modeled and presented in this paper. An elastic-viscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. A microcrack growth law, which is commonly employed in linear viscoelastic fracture mechanics, is successfully used for describing the damage growth in the body. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode, and then transformed to controlled-stress constitutive equation by simply replacing stress and pseudo strain with pseudo stress and strain. The transformed constitutive equation in terms of pseudo stress satisfactorily predicts the mechanical behavior of asphalt concrete all the way up to failure under controlled-stress modes.

  • PDF

Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy (등가탄성에너지법에 의한 콘크리트의 연속체 손상모델)

  • 이기성;변근주;송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.172-178
    • /
    • 1995
  • Concrete contains numerous microcracks at initially poured. The growth and propagation of nicrockacsk are believed tc finally incur the faiure of concrete. These processings are understood as a damage. Damage IS represented as a second-order tensor and crack is treated as a con tinuum phenomenon. In this paper, damage is characterized through the effective stress concept together with the hypothesis of elastic energy equivalence, and damage evolution law and constitutive equation of a damage model are derived by using the Helmholtz frte eriergy and the dissipation potential by means of the thermodynamic principles. The constitutive equation of the model includes the effects of elasticity, anisotropic damage and plasticity of concrete. There are two effective tangent stiffness tensors in this model : one is for elastic-darnage and the other for plastic damage. For the verification of the model, finite element analysis was performed for the analysis of concrete subjec:t to uniaxial and biaxial loading and the results obtained were compared with test results.

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam (폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식)

  • Kwon, Sun-Beom;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2018
  • This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.