• Title/Summary/Keyword: 소형 인공위성

Search Result 89, Processing Time 0.024 seconds

Survey on Laser Ablation Micro-thruster for Small Satellites (소형 인공위성을 위한 레이저 삭마 미소 추력기 개발 현황)

  • Park, Young Min;Lee, Bok Jik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • With the advancement in technology, miniaturization, integration, and weight reduction of satellite components have become possible. In this regard, existing medium and large satellites have been replaced by small satellites. As the demand for small satellites increases, the need for micro-thrusters has emerged for precise attitude and position control. A laser ablation micro-thruster, which generates thrust by using ablation jets that offer a wide range of thrusts and low-impulse thrusts, is considered as an alternative for micro-thrusters in small satellites. The objective of the present study is to introduce configurations of the laser ablation micro-thruster and its research trend.

Development of Navigation Computer for Small Satellites Using Integrated GPS/INS (소형위성용 GPS/INS 통합 항법 컴퓨터 개발)

  • Choi, Young-Hoon;Lee, Byung-Hoon;Chnag, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.393-398
    • /
    • 2008
  • This paper suggests a GPS/INS navigation computer architecture that can be applied to small satellites. In order to implement a GPS/INS navigation system on a small satellite, the extreme environment in space such as radiation, micro-gravity, vacuum, etc. must be considered. In addition, a real-time processing ability is required for the GPS/INS navigation system since the formation flying of multiple small satellites is the ultimate goal. The developed navigation electronics utilizes a PowerPC-type MPC860T that has space environment heritage, and a pair of Atmega128s that has been implemented in KAUSAT-2 and has completed the space environment verification tests. The navigation algorithm is designed to work in VxWorks environment, ported in MPC860T.

Survey on Laser Ablation Micro-thruster for Small Satellites (소형 인공위성을 위한 레이저 삭마 미소 추력기 개발 현황)

  • Park, Young Min;Lee, Bok Jik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.753-756
    • /
    • 2017
  • With the advancement of technology, miniaturization, integration, and weight reduction have become possible, and the existing medium and large satellites have been replaced by small satellites, and the need for a micro thruster has emerged. Laser ablation micro-thruster is a new type thruster using laser ablation. It is emerging as a new candidate in micro-thrusters with wide thrust range and low single impulse thrust. The objective of present study is to introduces the structure, propellant, and research trends of the laser ablation micro-thruster.

  • PDF

Agile Attitude Control of Small Satellite using 5Nm Small CMG (5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어)

  • Rhee, Seung-Wu;Seo, Hyun-Ho;Yoon, Hyung-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.952-960
    • /
    • 2018
  • Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

A Study on Standardization of Data Bus for Modular Small Satellite (모듈화 소형위성의 Data Bus 표준화 방안 연구)

  • Jang, Yun-Uk;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.620-628
    • /
    • 2010
  • Small satellites can be used for various space research and scientific or educational purposes due to advantages in small size, low-cost, and rapid development. Small Satellites have many advantages of application to Responsive Space. Compared to traditional larger satellites, however, Small satellites have many constraints due to limitations in size. Therefore, it is difficult to expect high performance. To approach maximum capability with minimal size, weight, and cost, standard modular platform of Small satellites is necessary. Modularity supports plug-and-play architecture. The result is Small satellites that can be combined quickly and reliably using plug-and-play mechanisms. For communication between modules, standard bus interface is needed. Controller Area Network(CAN) protocol is considered optimum data bus for modular Small satellite. CAN can be applied to data communication with high reliability. Hence, design optimization and simplification can also be expected. For ease of assembly and integration, modular design can be considered. This paper proposes development method for standardized modular Small satellites, and describes design of data interface based on CAN and a method of testing for modularity.

Development of Attitude Control Thruster of KOMPSAT (다목적 실용위성 자세제어용 추력기 개발)

  • 이성택;장기원;이상희;최영종;류정호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.1-2
    • /
    • 1997
  • 인공위성용 추력기는 위성의 자세제어 및 궤도조정용 소형 액체추진기관으로서 개발기술은 인공위성 그 자체는 물론 위성 발사체와 유도 미사일의 추진기관에 이르기까지 다양하게 확장 적용할 수 있는 핵심 기반기술이다. 때문에 선진국으로부터의 기술 이전을 기대하기 힘든 품목으로, 자체 개발을 통해 위성이나 유도무기에 장착 운용시험을 하기에도 막대한 비용 때문에 회피되고 있는 실정이다. (주)한화는 정부에서 국책과제로 추진하고 있는 KOMPSAT 위성 개발사업에 참여하여 소형 액체 추진기관인 단일 추진제 추력기의 개발을 추진하였다 1994년 11월 사업착수 이래 미국 TRW사로부터 추력기 설계, 해석 및 제작 기술을 이전 받았으며, 추력기 제작/시험 시설을 완공하여 TRW사의 제품 품질 요구조건(product assurance requirements)에 의거 제작에 착수하였다. 현재 총 8세트의 이중 추력기 모듈(dual thruster module)을 제작 납품하였으며 또한 추력기 자체의 핵심 부품을 원부자재 가공으로부터 제작하고 이의 인증 시험을 성공적으로 완료하였다. 현재 국산화 추력기를 KOMPSAT 위성에 장착하기 위한 이중 추력기 모듈 제작이 진행 중에 있다.

  • PDF

Development of Magnetic Torquer for Satellite Attitude Control (인공위성 자세제어용 Magnetic Torquer 개발)

  • Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.54-57
    • /
    • 2008
  • Magnetic torquer, which uses torque between magnetic dipole moment and earth magnetic field, has been used to control attitude of satellites. In this work, we developed a magnetic torquer for small scientific satellite and test under environmental conditions of the satellite launching and orbital motion have been carried out. The developed magnetic torquer shows saturation magnetic dipole moment of $15Am^2$, linearity of 0.3 % in the range of ${\pm}12Am^2$, mass of 0.46 kg, and power consumption of 1 Watt at magnetic dipole moment of $10Am^2$.

Orbital Transfer Process and Analysis of Small Satellite for Capturing Korean Satellite as Active Debris Removal (ADR) Mission (우리별 위성 포획 임무 수행을 위한 소형위성의 궤도 천이 방법 및 분석)

  • Junchan Lee;Kyungin Kang
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.101-117
    • /
    • 2023
  • Active debris removal, a technology that approaches and removes space debris in orbit, and the on-orbit service, a technology for extending the mission life of satellites by fuel charging or by exchanging the battery, are gaining interest with the growth of the space community. SaTReC plans to develop a satellite capable of capturing and removing Korean satellites orbiting in space after the end of their missions. In contrast to the previously launched satellites by Korea, which were mainly intended to observe Earth and the space environment, rendezvous/docking technologies, as required in the future during, for instance, space exploration missions, will be implemented and demonstrated. In this paper, an orbital transition method for next-generation small satellites that will capture and remove space debris will be introduced. It is assumed that a small satellite with a mass of approximately 200 kg will be injected into the mission orbit through Korea Space Launch Vehicle-II in 2027. Because the satellite must access the target using a minimum amount of fuel, an approaching technology using Earth's J2 perturbation force has been developed. This method is expected to enable space debris removal missions for relatively lightweight satellites and to serve as the basis for carrying out a new type of space exploration in what is termed the 'Newspace' era.

인공위성 동시 관측을 이용한 위치 결정 가능성 연구

  • Kim, Jeong-Mi;Kim, Sam;Yoon, Jae-Hyuk;Yoon, Yo-Na;Lim, Hong-Seo;Moon, Hong-Kyu;Han, Won-Yong;Byeon, Yong-Ik;Kang, Yong-Woo
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.65-65
    • /
    • 2004
  • 국가지정연구실 사업인 “인공위성 및 지구접근천체 감시연구(NEOPAT)”에서는 인공위성에 대한 거리 정보를 광학 관측으로부터 결정하기위하여 2개의 관측소에서 동일한 시각에 동일한 위성에 대한 관측을 진행하는 스테레오 관측 연구를 진행하였다. 이를 위해서 대전에 위치한 한국천문연구원의 60cm 광시야 망원경과 천안 연세대 관측소의 50cm 광시야 망원경 그리고 200mm NIKON 렌즈에 2K CCD로 구성된 소형 위성관측 시스템(KASAT) 2기를 사용하여 2003년부터 2004년까지 고도별 위성들에 따른 동시 관측을 시도하였다. (중략)

  • PDF