• Title/Summary/Keyword: 소포체

Search Result 235, Processing Time 0.023 seconds

Regulation of Unfolded Protein Response by Ethylene Glycol in Rat (Rat에서 ethylene glycol에 unfolded protein response의 조절)

  • Lee, Eun Ryeong;Kwon, Kisang
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1104-1108
    • /
    • 2013
  • Ethylene glycol (EG) is the most commonly used for automotive antifreeze, and it's easily misuseful for human. EG poisoning occurs in suicide attempts and infrequently, either intentionally through misuse or accidentally because of sweet taste. Though EG itself is mild toxic to the human body, it becomes higher toxic organic acids by in vivo broken down that are responsible for extensive cellular damage in various tissues caused principally by the metabolites. It is already well known that various cellular stresses induce gene expression of endoplasmic reticulum (ER) chaperones and ER stress sensors. This study demonstrated that regulation of gene expression of ER chaperones and ER stress sensors was induced by EG in rat tissues, and in tissues histological changes are also detected by both staining H&E and immunofluorescent.

Immunocytochemical Investigation on the Intracisternal Accumulations of Storage Protein in Pea Cotyledon Cells (완두 자엽세포의 소포체 내강에 축적된 저장 단백질에 대한 면역세포화학적 연구)

  • Jeong, Byung-Kap;Park, Hong-Duok
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • In 1980s, the fragmentation or subdivision of protein deposits at the periphery of protein storage vacuole was suggested as the only route of PB development in pea cotyledon cells. Since then, other independant processes such as terminal dilation , transformation and de novo development have been discussed as alternative routes for PB development, and today, these multiple mechanisms of PB development are accepted as a result of active investigations. For analysis of the protein accumulations in the ER cisternae during seed development, immunocytochemical gold labellings were applyed on the single cells separated by enzymatic digestion from cotyledon tissue. Anti-legumin labellings at the early stage, and anti-vicilin labellings at the intermediate stage were observed on the protein-filled ER. The $\alpha-Tip$, which is the ER retention protein, was labelled somewhat at late stage, and PPase, a sort of tonoplast membrane protein, was labelled at early stage.

  • PDF

Molecular Mechanism of Endoplasmic Reticulum Stress Transducer OASIS Family (소포체스트레스 센서 OASIS family의 분자기전)

  • Kwon, Kisang;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.473-480
    • /
    • 2015
  • The endoplasmic reticulum (ER) in the eukaryotic cells is the first compartment in the secretory pathway. Almost secretory proteins and membrane proteins are secreted through the ER, in which post-translational modifications occur via diverse signals from the ER lumen to the cytoplasm and nucleus. Only then are correctly-folded proteins secreted to the outside cells. Unfolded proteins that accumulate in the ER cause a kind of intracellular stress, ER stress, and activate an unfolded protein response (UPR) system. The 3 major transducers of the UPR are inositol requiring 1 (IRE1), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6), all of which are ER transmembrane proteins. Recently, novel types of a new ATF6 family have been identified. Those commonly have an ER-transmembrane domain, a transcription-activation domain and a basic leucine zipper (bZIP) domain―Luman, OASIS, BBF2H7, CREBH and CREB4. Each factor functions by regulating the UPR in specific organs and tissues. Although the detailed molecular mechanisms of OASIS family members are unknown, in this study we comprehensively introduce these molecular signals.

Studies on the Toxicity of $\delta$-endotoxin of Bacillus thuringiensis to the Several Tissues of Hyphantria cunea Drury (미국흰불나방(Hyphantria cunea Drury)에 대한 Bacillus thuringiensis 내독소단백질의 독성효과에 관한 연구)

  • 전향미;조자향;강석권;서숙재
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.1
    • /
    • pp.62-67
    • /
    • 1995
  • Ultrastructural changes of tissues caused by Bacillus thuringiensis var. kurstaki $\delta$-endotoxin intoxication of Hyphantria cunea were observed by transmission electron microscopy. Bt $\delta$-endotoxin crystals induced the disruption of microvilli, vacuolation of cytoplasm, changes in the cisternae of the endoplasmic reticulum, disappearance of basal striations, loss of ribosomes, and changes in the configurations of mitochondria in the columnar cell of midgut. The fat body cells also showed spherical endoplasmic reticulum and distorted mitochondria, and then the cells were destroyed.

  • PDF

Seed Production Ability of Doubled Haploid Plants through Microspore Culture in Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Introduced from China (중국도입 배추 소포자배양에 의한 배가반수체의 종자생산능력)

  • Jo, Man Hyun;Ham, In Ki;Park, Min Young;Kim, Tae Il;Lim, Yong Pyo;Lee, Eun Mo
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.573-578
    • /
    • 2012
  • A total of eleven Chinese cabbage accessions were used for microspore culture and were grown to take basal data. Based on the collected data, breeding materials were chosen to develop new improved Chinese cabbage cultivars. The range of microspore-derived embryoid taken from flower buds was 1.6 to 35.4 embryoids. The embryoids from IT26110 and IT26153 among the Chinese cabbages were more than 34 per flower bud. The viability rate after cold treatment was low from 0.2 to 11.7%. The range of fertility rate was 7.7 to 58.8% in general but the IT26118, IT26122, IT26128, IT26130, and IT26164 were more than 50%. The result of their seed production ability by selfing was 11.9 seeds per siliqua in IT26128 while the others were less than 10 seeds. In the microspore culture using parents of different hereditary, the number of embryoids, the number of plants, the rate of fertility and their pure seed production ability appeared to be very different in doubled haploid lines obtained from fertile plants of Chinese cabbage.

Biological Study on the Increment of Survival Rate during Early Life Cycle in the Rockfish, Sebastes schlegeli(Teleostei: Scorpaenidae) - III. Ultrastructure of the Adult Digestive Tract (조피볼락, Sebastes schlegeli의 초기 생활사 동안 생존율 향상을 위한 생물학적 연구 - III. 성체 소화관의 미세구조)

  • Chin, Pyung;Lee, Jung-Sick;Shin, Yun-Kyung;Kim, Hak-Gyoon
    • Korean Journal of Ichthyology
    • /
    • v.10 no.1
    • /
    • pp.115-127
    • /
    • 1998
  • The digestive tract of the rockfish, Sebastes schlegeli composed of pharynx, esophagus, stomach, intestine, anus and ten or eleven pyloric caeca. Pyloric caeca is blind sac of banana shape, and that is originated from pyloric portion of the stomach. The relative length of gut(RLG), that is length of digestive tract to standard length, is about 1.56(n=10). Esophageal muscularis consists of thin outer layer of longitudinal muscle and thick inner layer of circular muscle. Mucosal epithelium consists of columnar epithelium with short microvilli and contains numerous mucous secretory cell. The mucosal folds of the stomach are regular, and the muscularis consists of longitudinal, oblique and circular muscle layer. The chief cell of the gastric gland have a tubular mitochondria, endoplasmic reticula and numerous secretory granules in electron-dense. However, parietal cell contains small mitochondria, endoplasmic reticula and vacuoles in low electron density. Mucosal epithelium of the pyloric caeca and intestine composed of columnar epithelium, goblet cell, rodlet cell and dark cell. Columnar absorptive cell in the pyloric caeca and intestine contains well developed mitochondria, endoplasmic reticula, vesiculated granules in high electron density, pinocytotic vesicles and multivesicular body. Rodlet cell have a well developed cytoplasmic capsule and the endoplasmic reticula in the cytoplasm. Dark cell showing a high electron density in the cytoplasm and contains well developed mitochondria. Columnar epithelium of the intestine have a well developed intercellular junction and the microvilli which contains actin filament originated from the cytoplasm. Mucosal epithelium of the intestine have a longer microvilli and more abundant goblet cells than in the pyloric caeca.

  • PDF

Skin Absorption and Physical Property of Ceramide-added Ethosome (세라마이드 함유 에토좀의 물성과 피부흡수)

  • Hyeon, Tong-Il;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.801-812
    • /
    • 2021
  • In order to delivery biotin to skin, ethosomes containing both biotin and ceramide were researched by using high pressure homogenizer. Biotin was utilized as a drug and ceramide NP was utilized as a supporter of bilayer. The biotin was entrapped in aqueous core, while ceramide NP was packed in the bilayer of the ethosomes. Looking at the physical properties of vesicles containing ceramide NP, the sized was 80~130 nm, the polydispersity index was 0.09~0.16, and the zeta potential was -40~-49 mV. In vesicles without ceramide NP, the size was 124.80±1.46 nm, and the zeta potential and polydispersity index were -45.48±1.27 mV and 0.088±0.018, respectively. Therefore, the ethosome with ceramide NP has improved physical properties of vesicles compared to the ethosome without ceramide NP. Skin absorption rates of ethosomes with ceramide NP were 6.13~14.98%, while skin absorption rate of ethosome without ceramide NP was 7.08% at 12 h. In conclusion, ethosomes containing ceramide NP not only improved the skin absorption efficiency, but had also a positive effect on the stability of vesicles.

Cellular Flavonoid Transport Mechanisms in Animal and Plant Cells (플라보노이드 세포 수송 기전)

  • Han, Yoo-Li;Lee, So-Young;Lee, Ji Hae;Lee, Sung-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.137-141
    • /
    • 2013
  • Flavonoids have various biological activities; however, their cellular uptake mechanism is beginning to be understood only recently. This review focuses on cellular flavonoids transport mechanisms in both plants and animals. In plants, flavonoids exist in various cellular compartments, providing a specialized transport system. Newly synthesized flavonoids can be transported from the endoplasmic reticulum to the vacuoles or extracellular space via cellular trafficking pathway. Among membrane transporters, ATP binding cassette, multidrug and toxic extrusion, bilitranslocase homologue transporters play roles in both the influx and efflux of cellular flavonoids across the cell membrane. In recent years, extensive researches have provided a better understanding on the cellular flavonoid transport in mammalian cells. Bilitranslocase transports flavonoids in various tissues, including the liver, intestine and kidneys. However, other transport mechanisms are largely unknown and thus, further investigation should provide detailed mechanisms, which can potentially lead to an improved bioavailability and cellular function of flavonoids in humans.