• Title/Summary/Keyword: 소음의 감쇠

Search Result 537, Processing Time 0.025 seconds

Characteristics of Directional Squeeze Film Damper Using ER Fluid (ER유체를 이용한 이방성 스퀴즈필름 댐퍼의 특성)

  • 안영공;양보석;삼하신
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.301-306
    • /
    • 2001
  • Electro-Rheological (ER) fluid is applied to a controllable squeeze film damper (SFD) for stabilizing a flexibly supported rotor system. ER fluid is a class of functional fluid whose yield stress varies according to the applied electric field strength, which is observed as viscosity variation of the fluid. In applying ER fluid to a SFD, a pair of rings of the damper can be used as electrodes. When the electrodes are divided into a horizontal pair and a vertical one, the SFD can produce damping force in each direction independently. A prototype of the directionally controllable SFD was constructed and its performance was experimentally and numerically investigated in the present work.

  • PDF

A Study on the Characteristics of Excess Attenuation of the Sound due to the Ground (지표면에 의한 음의 초과 감쇠 특성 연구)

  • 황철호;정성수
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.401-409
    • /
    • 1997
  • This study observed the meterological influence on the excess attenuation with various flow resistivities. The flow resistivity is simulated up to 30, 000 cgs rayls. There is no significant differences among results from spherical wave analysis for excess attenuation, from plane wave analysis, and from locally reacting analysis. This is validated only when the flow resistivity is more than 100 cgs rayls. For the determination of effective flow resistivity of ground by measuring the excess attenuation experimentally, it is highly recommended that the distance between source and receiver is about 2.5m, and that the height of them is 0.3-0.4 m in case that they have the same height. Under this proposed conditions, the flow resistivity of 6-month-passed asphalt ground is estimated to 5, 000 cgs rayls by comparing the measured excess attenuation with the calculated.

  • PDF

A Study on the Characteristics of Vibration Damping of a Beam with Inserted Viscoelastic Layer (점탄성층을 삽입한 3층 적층보의 진동감쇠특성에 관한 연구)

  • 박응순;박세만;박명균;박상규
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.511-519
    • /
    • 1997
  • For a number of years it has been known that flexural vibration in a beam and plate can be damped by the application of layer of damping (viscoelastic) material that is in turn constrained by a backing layer or foil. In this study, a quantitative analysis of damping of the sandwich beam has been performed by using impact test. The damping is characterized by the loss factor .etha. in which the damping is normalized by imaginary part of the complex bending stiffiness of the beam. Results show that the relative thickness of the sandwich beam gives more effect on the riatural-frequencies and loss factor than the variation of width does. It is also shown that the Ross-Kerwin-Ungar equation and impact test can be effectively used to identify the damping characteristic of the sandwich beam and viscoelastic material.

  • PDF

An Assessment of Elastic and Damping Material Properties of PVC/MBS by an Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성 및 감쇠 특성 평가)

  • 박명균;박세만;최영식;박상규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.766-772
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic and damping properties of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests In this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease while the damping capacity improve when MBS rubber was added in the range up to 9 phr.

Experimental Study on the Damping and Stiffness Characteristics of MR Elastomers (MR 엘라스토머의 감쇠 및 강성 특성에 대한 실험조사)

  • Kwak, Moon-K.;Jung, Moon-San;Bae, Byung-Chan;Heo, Seok;Song, Myong-H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1137-1141
    • /
    • 2007
  • This paper is concerned with the experimental research of magnetorheological elastomers (MREs). The modulus of the MR elastomers can be controlled by an applied magnet field, so that it can be effectively used for vibration suppression applications. The MR elastomer in this experiment is a mixture of KE-1300 silicone, carbonyl iron powder (300mesh) and a silicone hardener (CAT-1300). Three specimens were manufactured and tested by using the vibration testing instruments. The magnetic field was generated by the permanent magnets. The experimental results show that the natural frequencies of the test article with MR elastomer changes by the applied magnetic field. The performance of the MR elastomer can be increased by stronger magnetic fields. This is under investigation.

  • PDF

Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam (점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF

An Experimental Study on the Vibration Absorber for Vibration Attenuation of Cantilever Beam Structure (외팔보 구조물의 진동감쇠를 위한 동흡진기의 실험적 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.991-996
    • /
    • 2011
  • This study was carried out vibration attenuation of vibration absorber attached to the cantilever beam structure. Modern tank guns are stabilized to allow fire on the move while traversing uneven terrain. However, as the length of the barrel is extended, to meet required muzzle exit velocities, the terrain induced vibrations lead to increased muzzle pointing errors. Thus, reducing these vibrations should lead to increased accuracy. The vibration absorber includes a compliant energy storage device, such as a spring, and a mass secured to the energy storage device. In this study, it accomplished a research in about gun barrel vibration attenuation using tuned mass damper. The barrel was hung from a bungee cord for free-free condition. It accomplished a vibration experiment for verified attenuation efficiency.

Vibration Suppression of Beam by Using Electromagnetic Shunt Damper (전자기 션트 감쇠기를 이용한 빔의 진동억제에 관한 연구)

  • Cheng, Tai-Hong;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • In this paper the electromagnetic shunt damper was newly employed for vibration suppression of the flexible structures. The electromagnetic shunt damper consists of a coil and a permanent magnet. The ends of the coil were connected to the RLC shunt circuit. The numerical solutions of resonant frequency of the shunt circuits were calculated by using Pspice. The vibration and damping characteristics of the flexible beams with the electromagnetic shunt damper were investigated by tuning the circuit parameters. Also, the effect of the magnetic intensity on the shunt damping was studied with the variation of the gap between the aluminum beam and the permanent magnet. Present results show that the magnet shunt damper can be successfully applied to reduce the vibration of the flexible structures.

  • PDF

A Study on the improvement of damping and optimal design of beam flexure for the passive vibration isolator (수동형 음강성 저주파 제진기의 감쇠 성능 향상과 빔 유연체의 최적 설계에 관한 연구)

  • Lee, Gil-Yong;Chang, Hee-Doh;Park, Young-Ho;Park, In-Hwang;Han, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.189-195
    • /
    • 2008
  • The vibration isolator system(VIS) which has very low natural frequency could be designed by applying an axial compressive force to the beam-column flexure(BCF). In this paper a new shape of the BCF is suggested. It has stepwise axially varying properties by viscoelastic damping layer. So it has internal structural damping by damping layer during deformation. First the analytic solution is obtained for the BCF. And its critical load, buckling mode, stiffness and stress distributions are investigated. Also the dynamic properties of the VIS consist of the damping layered BCF are studied. Finally the optimal design procedure of damping layered BCF for the VIS is suggested. The improved performance of suggested VIS is verified by some experiments.

  • PDF

Damping Force Characteristics of MR Damper with Additional Flow Path (부가적인 유로가 있는 MR 댐퍼의 감쇠력 특성)

  • Sohn, Jung Woo;Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.426-431
    • /
    • 2015
  • In this work, a new type of MR damper with additional flow path in piston is proposed and damping force characteristics are numerically evaluated. Flow-mode type MR damper is considered and mathematical model is established based on Bingham rheological model of MR fluid to obtain accurate prediction of damping force characteristics. Damping force of the proposed MR damper are calculated with respect to piston velocity and input current. In addition, investigation on damping force characteristics is carried out according to number of additional flow path and excellence of the proposed MR damper is demonstrated.