Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.93-101
/
2023
In this paper, we propose a method of creating a 3D bounding box for an object using a vanishing point to increase the accuracy of object recognition in an image when recognizing an traffic object using a video camera. Recently, when vehicles captured by a traffic video camera is to be detected using artificial intelligence, this 3D bounding box generation algorithm is applied. The vertical vanishing point (VP1) and horizontal vanishing point (VP2) are derived by analyzing the camera installation angle and the direction of the image captured by the camera, and based on this, the moving object in the video subject to analysis is specified. If this algorithm is applied, it is easy to detect object information such as the location, type, and size of the detected object, and when applied to a moving type such as a car, it is tracked to determine the location, coordinates, movement speed, and direction of each object by tracking it. Able to know. As a result of application to actual roads, tracking improved by 10%, in particular, the recognition rate and tracking of shaded areas (extremely small vehicle parts hidden by large cars) improved by 100%, and traffic data analysis accuracy was improved.
Park, Sung-chan;Hwang, Kwang-bok;Park, Hee-mun;Choi, Young-kiu;Park, Jin-hyun
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.468-469
/
2018
We design CNN(convolutional neural network) which is applicable to steering control system of autonomous vehicle. CNN has been widely used in many fields, especially in image classifications. But CNN has not been applied much to the regression problem such as function approximation. This is because the input of CNN has a multidimensional data structure such as image data, which makes it is not applicable to general control systems. Recently, autonomous vehicles have been actively studied, and many techniques are required to implement autonomous vehicles. For this purpose, many researches have been studied to detect the lane by using the image through the black box mounted on the vehicle, and to get the vanishing point according to the detected lane for control the autonomous vehicle. However, in detecting the vanishing point, it is difficult to detect the vanishing point with stability due to various factors such as the external environment of the image, disappearance of the instant lane and detection of the opposite lane. In this study, we apply CNN for steering control of an autonomous vehicle using a black box image of a car.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.545-548
/
2012
본 논문에서는 영상내 관심영역의 역 투시변환과 차선검출필터를 적용한 실시간 차선검출방법을 제안한다. 영상의 시작 프레임에서 소실점을 찾고 이를 기준으로 관심영역을 설정하고 차선을 예측하였으며, 예측된 차선을 기반으로 역 투시변환계수를 추출하여 원근감이 제거된 영상을 얻고, 이로부터 차선을 검출하였다. 제안한 방법은 원근감이 제거된 영상에 차선검출 필터를 적용하여 차선을 검출하는 방법으로, 처리영역을 축소하고 처리과정을 단순화 함으로써 초당 50 frames 정도의 양호한 차선검출 결과를 보였다.
Seong-Min Kang;Kyeong-Min Nam;Ji-Min Yu;Ji-Won Choi;Daehwan Kim
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.696-697
/
2024
본 논문은 이동 카메라를 이용하여 터널 내 조명을 자동으로 검출하고, 조명의 고장 여부를 판단하는 연구에 대한 것이다. 실시간으로 조명의 켜짐/꺼짐 상태에 상관없이 조명을 검출할 수 있으며, 꺼진 조명은 조명 고장 의심 영역으로 식별한다. Yolo 와 DeepSORT 를 사용하여 조명 검출과 추적을 진행하였다. 특히, 터널 영상 소실점을 활용하여 조명 위치의 사전 정보로 사용함으로써 조명 검출 정확도를 향상시켰다. 제안한 연구는 터널 내의 조명 관리 및 유지 보수에 도움이 될 것으로 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.185-188
/
2009
단일 카메라 영상으로 입력되는 환경 정보에 대해서 보도에 대한 길의 소실점과 보도 영역에 대한 정보를 획득하는 방법과 보도 영역에 대해 블록 세그멘테이션을 통하여 장애물과 같은 물체 영역을 구분한다. 소실정과 보도 영역을 획득하기 위한 방법으로 에지영상에서 보도의 외곽선 정보를 추출하도록 한다. 이를 위해 체인코드를 이용하여 특정한 방향으로 향하는 직선 성분을 검출하도록 한다 보도 영역 내에 존재하는 물체의 영역을 구분하기 위해서 영역을 특정 크기를 가지는 블록으로 구분하고 각 블록이 가지는 평균 컬러 정보를 이용하여 영역을 세그멘테이션 한다. 세그멘테이션을 통해 얻은 영역을 통해 보도의 영역과 장애물의 영역을 구분하고 각 장애물의 위치를 계산하다. 알고리즘의 평가를 위해 실내의 복도 환경과 단순한 형태를 가지는 실외 환경에서 획득한 영상을 이용하여 실험하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.70-73
/
2010
최근 IT 기술이 융합된 지능형 자동차 기술에 대한 관심이 높아짐에 따라 이에 대한 연구가 활발히 진행되고 있다. 차선 검출은 지능형 자동차의 주요 과제인 첨단 안전자동차 기술의 핵심적인 부분으로 국내외에서 다양한 방법들에 대한 연구가 진행되었다. 차량의 안전을 향상시키기 위해서는 충분한 제동거리 확보가 가능한 거리까지 정확하고 빠른 차선 검출이 이루어져야 한다. 기존의 경계선 검출기반 차선 검출은 소실점 근처에서 경계선 검출이 이루어지지 않았다. 이는 차선과 도로의 색이 잘 구분되지 않는 채널을 사용하는 문제에서 기인한다. 따라서 본 논문에서는 선형 판별 분석 기법을 이용하여 차선과 도로 색을 가장 잘 구분할 수 있는 RGB 가중치를 계산하여 이로부터 projection 영상을 만들고, 변환한 영상에서 경계선 검출을 수행함으로써 보다 정확한 경계선 검출 결과를 얻는 방법을 제안한다. 제안한 방법으로 얻은 영상과 기존의 흑백 영상에 동일한 경계선 검출기를 적용하여 성능을 비교하고, 이를 적용한 차선검출 실험결과를 제시한다.
Proceedings of the Korean Society of Computer Information Conference
/
2010.07a
/
pp.121-124
/
2010
본 논문은 시각 장애인 및 보도 보행에 어려움을 갖는 사람들에게 안전한 보도 보행을 돕기 위한 보도 및 차도 영역 추출을 위해 보도 및 차도의 라인검출 기법을 제안한다. 사람의 눈높이에서 영상을 취득, 자연영상에서 입력된 잡음 및 노이즈를 제거하고, 캐니 에지 맵 추출, 허프 변환을 통해 보도/차도의 라인을 추출한다. 추출된 라인은 본 논문에서 제안한 방법으로 유효라인을 얻게 되며, 얻어진 유효 라인의 결합으로 삼각 표본을 생성하여 보도의 영역을 추출 하게 된다. 제안된 방법은 자연영상의 보도 위치에서 보도와 차도의 올바른 라인을 추출하는데 강인함을 실험을 통해 검증하였다.
This paper describes a method to identify objects for autonomous navigation of an outdoor mobile robot. To identify objects, the robot recognizes the object from an image taken by moving robot on outdoor environment. As a beginning, this paper presents the candidates for a segment of region to building of artificial object, sky and trees of natural objects. Then we define their characteristics individually. In the process, we segment the regions of the objects included by preprocessing using multiple features. Multiple features are HSI, line segments, context information, hue co-occurrence matrix, principal components and vanishing point. An analysis of building identifies the geometrical properties of building facet such as wall region, windows and entrance. The building as intersection in vertical and horizontal line segment of vanishing point extracts the mesh. The wall region of building detect by merging the mesh of the neighbor parallelograms that have similar colors. The property estimates the number of story and rooms in the same floors by merging skewed parallelograms of the same color. We accomplish the result of image segmentation using multiple features and the geometrical properties analysis of object through experiments.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.6
/
pp.797-807
/
2008
This paper proposes a new algorithm of extracting forward vehicle areas using the acquired lanes and road area information on road images with complex background to improve the efficiency of the vehicle detection. In the first stage, lanes are detected by taking into account the connectivity among the edges which are determined from a method of chain code. Once the lanes proceeding to the same direction with the running vehicle are detected, neighborhood roadways are found from the width and vanishing point of the acquired roadway of the running vehicle. And finally, vehicle areas, where forward vehicles are located on the road area including the center and neighborhood roadways, are extracted. Therefore, the proposed scheme of extracting forward vehicle area improves the rate of vehicle detection on the road images with complex background, and is highly efficient because of detecting vehicles within the confines of the acquired vehicle area. The superiority of the proposed algorithm is verified from experiments of the vehicle detection on road images with complex background.
In this paper, we propose an adaptive pavement region detection method that is robust to changes of structural patterns in a natural scene. In order to segment out a pavement reliably, we propose two step approaches. We first detect the borderline of a pavement and separate out the candidate region of a pavement using VRays. The VRays are straight lines starting from a vanishing point. They split out the candidate region that includes the pavement in a radial shape. Once the candidate region is found, we next employ the adaptive multi-seed region growing(A-MSRG) method within the candidate region. The A-MSRG method segments out the pavement region very accurately by growing seed regions. The number of seed regions are to be determined adaptively depending on the encountered situation. We prove the effectiveness of our approach by comparing its performance against the performances of seed region growing(SRG) approach and multi-seed region growing(MSRG) approach in terms of the false detection rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.