• Title/Summary/Keyword: 소실점 검출

Search Result 39, Processing Time 0.028 seconds

Vanishing point-based 3D object detection method for improving traffic object recognition accuracy

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.93-101
    • /
    • 2023
  • In this paper, we propose a method of creating a 3D bounding box for an object using a vanishing point to increase the accuracy of object recognition in an image when recognizing an traffic object using a video camera. Recently, when vehicles captured by a traffic video camera is to be detected using artificial intelligence, this 3D bounding box generation algorithm is applied. The vertical vanishing point (VP1) and horizontal vanishing point (VP2) are derived by analyzing the camera installation angle and the direction of the image captured by the camera, and based on this, the moving object in the video subject to analysis is specified. If this algorithm is applied, it is easy to detect object information such as the location, type, and size of the detected object, and when applied to a moving type such as a car, it is tracked to determine the location, coordinates, movement speed, and direction of each object by tracking it. Able to know. As a result of application to actual roads, tracking improved by 10%, in particular, the recognition rate and tracking of shaded areas (extremely small vehicle parts hidden by large cars) improved by 100%, and traffic data analysis accuracy was improved.

Application of CNN for steering control of autonomous vehicle (자율주행차 조향제어를 위한 CNN의 적용)

  • Park, Sung-chan;Hwang, Kwang-bok;Park, Hee-mun;Choi, Young-kiu;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.468-469
    • /
    • 2018
  • We design CNN(convolutional neural network) which is applicable to steering control system of autonomous vehicle. CNN has been widely used in many fields, especially in image classifications. But CNN has not been applied much to the regression problem such as function approximation. This is because the input of CNN has a multidimensional data structure such as image data, which makes it is not applicable to general control systems. Recently, autonomous vehicles have been actively studied, and many techniques are required to implement autonomous vehicles. For this purpose, many researches have been studied to detect the lane by using the image through the black box mounted on the vehicle, and to get the vanishing point according to the detected lane for control the autonomous vehicle. However, in detecting the vanishing point, it is difficult to detect the vanishing point with stability due to various factors such as the external environment of the image, disappearance of the instant lane and detection of the opposite lane. In this study, we apply CNN for steering control of an autonomous vehicle using a black box image of a car.

  • PDF

Real-time Lane Detection Method using Inverse Perspective Transform and Lane Filter (역 투시변환과 차선 필터를 이용한 실시간 차선 검출방법)

  • Heo, Hwan;Kim, Sung-Hun;Chae, Il-Moon;Han, Ki-Tea
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.545-548
    • /
    • 2012
  • 본 논문에서는 영상내 관심영역의 역 투시변환과 차선검출필터를 적용한 실시간 차선검출방법을 제안한다. 영상의 시작 프레임에서 소실점을 찾고 이를 기준으로 관심영역을 설정하고 차선을 예측하였으며, 예측된 차선을 기반으로 역 투시변환계수를 추출하여 원근감이 제거된 영상을 얻고, 이로부터 차선을 검출하였다. 제안한 방법은 원근감이 제거된 영상에 차선검출 필터를 적용하여 차선을 검출하는 방법으로, 처리영역을 축소하고 처리과정을 단순화 함으로써 초당 50 frames 정도의 양호한 차선검출 결과를 보였다.

Study on Fault Detection Based on Lighting Detection in Tunnels Using a Mobile Camera (이동 카메라를 사용한 터널 내 조명 검출 기반 고장 여부 판단 연구)

  • Seong-Min Kang;Kyeong-Min Nam;Ji-Min Yu;Ji-Won Choi;Daehwan Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.696-697
    • /
    • 2024
  • 본 논문은 이동 카메라를 이용하여 터널 내 조명을 자동으로 검출하고, 조명의 고장 여부를 판단하는 연구에 대한 것이다. 실시간으로 조명의 켜짐/꺼짐 상태에 상관없이 조명을 검출할 수 있으며, 꺼진 조명은 조명 고장 의심 영역으로 식별한다. Yolo 와 DeepSORT 를 사용하여 조명 검출과 추적을 진행하였다. 특히, 터널 영상 소실점을 활용하여 조명 위치의 사전 정보로 사용함으로써 조명 검출 정확도를 향상시켰다. 제안한 연구는 터널 내의 조명 관리 및 유지 보수에 도움이 될 것으로 기대한다.

Walking Area and Obstacle Detection System Using Block Segmentation in the Outdoor Environment (블록기반 세그멘테이션을 이용한 실외환경에서의 보행영역 및 장애물 검출)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.185-188
    • /
    • 2009
  • 단일 카메라 영상으로 입력되는 환경 정보에 대해서 보도에 대한 길의 소실점과 보도 영역에 대한 정보를 획득하는 방법과 보도 영역에 대해 블록 세그멘테이션을 통하여 장애물과 같은 물체 영역을 구분한다. 소실정과 보도 영역을 획득하기 위한 방법으로 에지영상에서 보도의 외곽선 정보를 추출하도록 한다. 이를 위해 체인코드를 이용하여 특정한 방향으로 향하는 직선 성분을 검출하도록 한다 보도 영역 내에 존재하는 물체의 영역을 구분하기 위해서 영역을 특정 크기를 가지는 블록으로 구분하고 각 블록이 가지는 평균 컬러 정보를 이용하여 영역을 세그멘테이션 한다. 세그멘테이션을 통해 얻은 영역을 통해 보도의 영역과 장애물의 영역을 구분하고 각 장애물의 위치를 계산하다. 알고리즘의 평가를 위해 실내의 복도 환경과 단순한 형태를 가지는 실외 환경에서 획득한 영상을 이용하여 실험하였다.

  • PDF

Edge Detector based on Linear Discriminant Analysis for Lane Detection (차선검출 위한 선형 판별 분석 기법 기반의 경계선 추출 방법)

  • Yoo, Hun-Jae;Yang, Uk-Il;Kang, Min-Sung;Choi, Jae-Seob;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.70-73
    • /
    • 2010
  • 최근 IT 기술이 융합된 지능형 자동차 기술에 대한 관심이 높아짐에 따라 이에 대한 연구가 활발히 진행되고 있다. 차선 검출은 지능형 자동차의 주요 과제인 첨단 안전자동차 기술의 핵심적인 부분으로 국내외에서 다양한 방법들에 대한 연구가 진행되었다. 차량의 안전을 향상시키기 위해서는 충분한 제동거리 확보가 가능한 거리까지 정확하고 빠른 차선 검출이 이루어져야 한다. 기존의 경계선 검출기반 차선 검출은 소실점 근처에서 경계선 검출이 이루어지지 않았다. 이는 차선과 도로의 색이 잘 구분되지 않는 채널을 사용하는 문제에서 기인한다. 따라서 본 논문에서는 선형 판별 분석 기법을 이용하여 차선과 도로 색을 가장 잘 구분할 수 있는 RGB 가중치를 계산하여 이로부터 projection 영상을 만들고, 변환한 영상에서 경계선 검출을 수행함으로써 보다 정확한 경계선 검출 결과를 얻는 방법을 제안한다. 제안한 방법으로 얻은 영상과 기존의 흑백 영상에 동일한 경계선 검출기를 적용하여 성능을 비교하고, 이를 적용한 차선검출 실험결과를 제시한다.

  • PDF

The Method of Pavement Line Detection using hough-transform (허프 변환을 이용한 보도 라인검출 기법)

  • Kim, Jin-Suk;Weon, Sun-Hee;Kim, Gye-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.121-124
    • /
    • 2010
  • 본 논문은 시각 장애인 및 보도 보행에 어려움을 갖는 사람들에게 안전한 보도 보행을 돕기 위한 보도 및 차도 영역 추출을 위해 보도 및 차도의 라인검출 기법을 제안한다. 사람의 눈높이에서 영상을 취득, 자연영상에서 입력된 잡음 및 노이즈를 제거하고, 캐니 에지 맵 추출, 허프 변환을 통해 보도/차도의 라인을 추출한다. 추출된 라인은 본 논문에서 제안한 방법으로 유효라인을 얻게 되며, 얻어진 유효 라인의 결합으로 삼각 표본을 생성하여 보도의 영역을 추출 하게 된다. 제안된 방법은 자연영상의 보도 위치에서 보도와 차도의 올바른 라인을 추출하는데 강인함을 실험을 통해 검증하였다.

  • PDF

Object Analysis on Outdoor Environment Using Multiple Features for Autonomous Navigation Robot (자율주행 로봇을 위한 다중 특징을 이용하여 외부환경에서 물체 분석)

  • Kim, Dae-Nyeon;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.651-662
    • /
    • 2010
  • This paper describes a method to identify objects for autonomous navigation of an outdoor mobile robot. To identify objects, the robot recognizes the object from an image taken by moving robot on outdoor environment. As a beginning, this paper presents the candidates for a segment of region to building of artificial object, sky and trees of natural objects. Then we define their characteristics individually. In the process, we segment the regions of the objects included by preprocessing using multiple features. Multiple features are HSI, line segments, context information, hue co-occurrence matrix, principal components and vanishing point. An analysis of building identifies the geometrical properties of building facet such as wall region, windows and entrance. The building as intersection in vertical and horizontal line segment of vanishing point extracts the mesh. The wall region of building detect by merging the mesh of the neighbor parallelograms that have similar colors. The property estimates the number of story and rooms in the same floors by merging skewed parallelograms of the same color. We accomplish the result of image segmentation using multiple features and the geometrical properties analysis of object through experiments.

A Scheme of Extracting Forward Vehicle Area Using the Acquired Lane and Road Area Information (차선과 도로영역 정보를 이용한 전방 차량 영역의 추출 기법)

  • Yu, Jae-Hyung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.797-807
    • /
    • 2008
  • This paper proposes a new algorithm of extracting forward vehicle areas using the acquired lanes and road area information on road images with complex background to improve the efficiency of the vehicle detection. In the first stage, lanes are detected by taking into account the connectivity among the edges which are determined from a method of chain code. Once the lanes proceeding to the same direction with the running vehicle are detected, neighborhood roadways are found from the width and vanishing point of the acquired roadway of the running vehicle. And finally, vehicle areas, where forward vehicles are located on the road area including the center and neighborhood roadways, are extracted. Therefore, the proposed scheme of extracting forward vehicle area improves the rate of vehicle detection on the road images with complex background, and is highly efficient because of detecting vehicles within the confines of the acquired vehicle area. The superiority of the proposed algorithm is verified from experiments of the vehicle detection on road images with complex background.

Detection of Pavement Region with Structural Patterns through Adaptive Multi-Seed Region Growing (적응적 다중 시드 영역 확장법을 이용한 구조적 패턴의 보도 영역 검출)

  • Weon, Sun-Hee;Joo, Sung-Il;Na, Hyeon-Suk;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.209-220
    • /
    • 2012
  • In this paper, we propose an adaptive pavement region detection method that is robust to changes of structural patterns in a natural scene. In order to segment out a pavement reliably, we propose two step approaches. We first detect the borderline of a pavement and separate out the candidate region of a pavement using VRays. The VRays are straight lines starting from a vanishing point. They split out the candidate region that includes the pavement in a radial shape. Once the candidate region is found, we next employ the adaptive multi-seed region growing(A-MSRG) method within the candidate region. The A-MSRG method segments out the pavement region very accurately by growing seed regions. The number of seed regions are to be determined adaptively depending on the encountered situation. We prove the effectiveness of our approach by comparing its performance against the performances of seed region growing(SRG) approach and multi-seed region growing(MSRG) approach in terms of the false detection rate.