Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.05a
/
pp.188-190
/
2017
투영(projective) 좌표계를 이용한 스칼라 곱셈(scalar multiplication) 연산을 지원하는 224-비트 타원곡선 암호(Elliptic Curve Cryptography; ECC) 프로세서의 설계에 대해 기술한다. 소수체 GF(p)상의 덧셈, 뺄셈, 곱셈 등의 유한체 연산을 지원하며, 연산량과 하드웨어 자원소모가 큰 나눗셈 연산을 제거함으로써 하드웨어 복잡도를 감소시켰다. 수정된 Montgomery ladder 알고리듬을 이용하여 스칼라 곱셈 연산을 제어하였으며, 단순 전력분석에 보다 안전하다. 스칼라 곱셈 연산은 최대 2,615,201 클록 사이클이 소요된다. 설계된 ECC-P224 프로세서는 Xilinx ISim을 이용한 기능검증을 하였다. Xilinx Virtex5 FPGA 디바이스 합성결과 7,078 슬라이스로 구현되었으며, 최대 79 MHz에서 동작하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.247-249
/
2017
NIST에서 표준으로 정의된 P-192, P-224, P-256, P-384 타원곡선 상의 스칼라 곱셈(scalar multiplication) 연산을 지원하는 Scalable 타원곡선 암호(Elliptic Curve Cryptography; ECC) 프로세서의 설계에 대해 기술한다. 투영(projective) 좌표계를 이용하여 하드웨어 자원 소모가 큰 나눗셈 연산을 제거하였으며, GF(p) 상의 덧셈, 뺄셈, 곱셈 등의 유한체 연산을 지원한다. 워드 기반 몽고메리 곱셈기를 이용하여 다양한 크기의 필드(field)에서 고정된 하드웨어 자원을 통하여 곱셈 연산을 수행하도록 하였으며, 필드의 크기에 따라 연산 사이클이 증가하거나 감소한다. 설계된 Scalable ECC 프로세서는 Verilog HDL로 모델링 되었으며, Modelsim을 이용한 기능검증을 하였다. Xilinx Virtex5 FPGA 디바이스 합성결과 5,376-비트 RAM과 970 슬라이스로 구현되었으며, 최대 55 MHz의 동작 주파수를 갖는다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.1
/
pp.46-55
/
2007
The Newton-Raphson's algorithm for finding a floating point reciprocal and inverse square root calculates the result by performing a fixed number of multiplications. In this paper, an improved Newton-Raphson's algorithm is proposed, that performs multiplications a variable number. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal and inverse square tables with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal and inverse square root unit. Also, it can be used to construct optimized approximate tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.254-256
/
2019
소수체 GF(p)와 이진체 $GF(2^m)$ 상의 다중 타원곡선을 지원하는 듀얼 필드 ECC (DF-ECC) 프로세서를 설계하였다. DF-ECC 프로세서의 저면적 설와 다양한 타원곡선의 지원이 가능하도록 워드 기반 몽고메리 곱셈 알고리듬을 적용한 유한체 곱셈기를 저면적으로 설계하였으며, 페르마의 소정리(Fermat's little theorem)를 유한체 곱셈기에 적용하여 유한체 나눗셈을 구현하였다. 설계된 DF-ECC 프로세서는 스칼라 곱셈과 점 연산, 그리고 모듈러 연산 기능을 가져 다양한 공개키 암호 프로토콜에 응용이 가능하며, 유한체 및 모듈러 연산에 적용되는 파라미터를 내부 연산으로 생성하여 다양한 표준의 타원곡선을 지원하도록 하였다. 설계된 DF-ECC는 FPGA 구현을 하드웨어 동작을 검증하였으며, 0.18-um CMOS 셀 라이브러리로 합성한 결과 22,262 GEs (gate equivalences)와 11 kbit RAM으로 구현되었으며, 최대 100 MHz의 동작 주파수를 갖는다. 설계된 DF-ECC 프로세서의 연산성능은 B-163 Koblitz 타원곡선의 경우 스칼라 곱셈 연산에 885,044 클록 사이클이 소요되며, B-571 슈도랜덤 타원곡선의 스칼라 곱셈에는 25,040,625 사이클이 소요된다.
The Newton-Raphson iterative algorithm for finding a floating point reciprocal which is widely used for a floating point division, calculates the reciprocal by performing a fixed number of multiplications. In this paper, a variable latency Newton-Raphson's reciprocal algorithm is proposed that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the reciprocal of a floating point number F, the algorithm repeats the following operations: '$'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$ with the initial value $'X_0=\frac{1}{F}{\pm}e_0'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 27 for the single precision floating point, and 57 for the double precision floating point. Let $'X_i=\frac{1}{F}+e_i{'}$, these is $'X_{i+1}=\frac{1}{F}-e_{i+1},\;where\;{'}e_{i+1}, is less than the smallest number which is representable by floating point number. So, $X_{i+1}$ is approximate to $'\frac{1}{F}{'}$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables $(X_0=\frac{1}{F}{\pm}e_0)$ with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal unit. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia scientific computing, etc.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.6
/
pp.1083-1091
/
2017
This paper describes a design of cryptographic processor supporting 224-bit elliptic curves over prime field defined by NIST. Scalar point multiplication that is a core arithmetic function in elliptic curve cryptography(ECC) was implemented by adopting the modified Montgomery ladder algorithm. In order to eliminate division operations that have high computational complexity, projective coordinate was used to implement point addition and point doubling operations, which uses addition, subtraction, multiplication and squaring operations over GF(p). The final result of the scalar point multiplication is converted to affine coordinate and the inverse operation is implemented using Fermat's little theorem. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 2.7-Kbit RAM and 27,739 gate equivalents (GEs), and the estimated maximum clock frequency is 71 MHz. One scalar point multiplication takes 1,326,985 clock cycles resulting in the computation time of 18.7 msec at the maximum clock frequency.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.3C
/
pp.176-184
/
2005
In this paper, we implemented an Elliptic Curve Cryptography(ECC) processor for Digital Transmission Contents Protection (DTCP), which is a standard for protecting various digital contents in the network. Unlikely to other applications, DTCP uses ECC algorithm which is defined over GF(p), where p is a 160-bit prime integer. The core arithmetic operation of ECC is a scalar multiplication, and it involves large amount of very long integer modular multiplications and additions. In this paper, the modular multiplier was designed using the well-known Montgomery algorithm which was implemented with CSA(Carry-save Adder) and 4-level CLA(Carry-lookahead Adder). Our new ECC processor has been synthesized using Samsung 0.18 m CMOS standard cell library, and the maximum operation frequency was estimated 98 MHz, with the size about 65,000 gates. The resulting performance was 29.6 kbps, that is, it took 5.4 msec to process a 160-bit data frame. We assure that this performance is enough to be used for digital signature, encryption and decryption, and key exchanges in real time environments.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.419-426
/
2021
A high-performance elliptic curve cryptography processor (HP-ECCP) was designed to support five field sizes of 192, 224, 256, 384 and 521 bits over GF(p) defined in NIST FIPS 186-2, and it provides eight modes of arithmetic operations including ECPSM, ECPA, ECPD, MA, MS, MM, MI and MD. In order to make the HP-ECCP resistant to side-channel attacks, a modified left-to-right binary algorithm was used, in which point addition and point doubling operations are uniformly performed regardless of the Hamming weight of private key used for ECPSM. In addition, Karatsuba-Ofman multiplication algorithm (KOMA), Lazy reduction and Nikhilam division algorithms were adopted for designing high-performance modular multiplier that is the core arithmetic block for elliptic curve point operations. The HP-ECCP synthesized using a 180-nm CMOS cell library occupied 620,846 gate equivalents with a clock frequency of 67 MHz, and it was evaluated that an ECPSM with a field size of 256 bits can be computed 2,200 times per second.
A model method has been known as the main characteristic of Singaporean elementary mathematics textbooks. However, little research has been conducted on how the model method is employed in the textbooks. In this study, we extracted contents related to the model method in the Singaporean elementary mathematics curriculum and then analyzed the characteristics of the model method applied to the textbooks. Specifically, this study investigated the units and lessons where the model method was employed, and explored how it was addressed for what purpose according to the numbers and operations. The results of this study showed that the model method was applied to the units and lessons related to operations and word problems, starting from whole numbers through fractions to decimals. The model method was systematically applied to addition, subtraction, multiplication, and division tailored by the grade levels. It was also explicitly applied to all stages of the problem solving process. Based on these results, this study described the implications of using a main model in the textbooks to demonstrate the structure of the given problem consistently and systematically.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.6
/
pp.221-228
/
2013
It is impossible directly to find a prime number p,q of a large semiprime n = pq using Trial Division method. So the most of the factorization algorithms use the indirection method which finds a prime number of p = GCD(a-b, n), q=GCD(a+b, n); get with a congruence of squares of $a^2{\equiv}b^2$ (mod n). It is just known the fact which the area that selects p and q about n=pq is between $10{\cdots}00$ < p < $\sqrt{n}$ and $\sqrt{n}$ < q < $99{\cdots}9$ based on $\sqrt{n}$ in the range, [$10{\cdots}01$, $99{\cdots}9$] of $l(p)=l(q)=l(\sqrt{n})=0.5l(n)$. This paper proposes the method that reduces the range of p using information obtained from n. The proposed method uses the method that sets to $p_{min}=n_{LR}$, $q_{min}=n_{RL}$; divide into $n=n_{LR}+n_{RL}$, $l(n_{LR})=l(n_{RL})=l(\sqrt{n})$. The proposed method is more effective from minimum 17.79% to maxmimum 90.17% than the method that reduces using $\sqrt{n}$ information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.