• 제목/요약/키워드: 소셜미디어 학습

검색결과 79건 처리시간 0.034초

리뷰 데이터 감성 분류 성능 향상을 위한 Fine-tuning 방법 (Fine-tuning Method to Improve Sentiment Classification Perfoimance of Review Data)

  • 박정일;임명진;김판구
    • 스마트미디어저널
    • /
    • 제13권6호
    • /
    • pp.44-53
    • /
    • 2024
  • 현대사회의 기업들은 소셜 미디어, 제품 리뷰, 고객 피드백 등 다양한 영역에 걸쳐 소비자 의견을 정확하게 이해하는 것이 경쟁에서 성공하기 위한 주요 과제임을 강조하며 감성 분류를 점점 더 중요한 작업으로 채택하고 있다. 감성 분류는 소비자의 다양한 의견과 감성을 파악하여 제품이나 서비스 개선에 도움을 주는 이유로 많은 연구가 진행중이다. 감성 분류에서는 대규모 데이터 셋과 사전 학습된 언어 모델을 통한 미세 조정이 성능 향상에 중요한 역할을 한다. 최근 인공지능 기술의 발전으로 감성 분류 모델은 높은 성능을 보이고 있으며, 특히 ELECTRA 모델은 효율적인 학습 방법과 적은 컴퓨팅 자원을 통해 뛰어난 결과를 제공한다. 따라서 본 논문에서는 ELECTRA에서 한국어를 학습한 KoELECTRA 모델을 이용하여 다양한 데이터 셋에 대한 효율적인 미세 조정을 통해 감성 분류 성능을 향상하는 방법을 제안한다.

빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사 (A Survey on Deep Learning-based Analysis for Education Data)

  • 노영욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.240-243
    • /
    • 2021
  • 최근에 빅 데이터와 AI 기술을 교육의 평가와 개별 학습에 적용하는 연구 성과가 있었다. 정보 기술의 혁신으로 소셜 미디어, MOOC, 지능형 개인지도 시스템, LMS, 센서 및 모바일 장치 등으로부터 학생들의 개인 기록, 생리학적 데이터, 학습 로그 및 활동, 학습 성과 및 결과를 포함하는 동적이고 복잡한 데이터를 수집 가능하였다. 또한 COVID-19 환경에서 e-러닝이 활성화 되어 많은 양의 학습 데이터가 생성되었다. 이 데이터로부터 학습 분석과 AI 기술을 적용하여 의미있는 패턴의 추출과 지식의 발견이 될 것으로 예상된다. 학습자 측면에서 학생의 학습 및 정서적 행동 패턴과 프로필을 식별하고, 평가 및 평가 방법을 개선하고, 개별 학생의 학습 성과 또는 중퇴를 예측하고, 개인화 된 지원을 위한 적응 시스템에 대한 연구는 필요하다. 본 연구에서는 교육용 데이터를 대상으로 이상탐지와 추천시스템에서 사용하는 기계학습 기술에 대한 조사와 분류를 하여 교육 분야의 연구에 기여하고자 한다.

  • PDF

명품 하울 유튜브 영상 댓글에 나타난 상대적 박탈감 여부와 특징 분석 - TF-IDF, Word2vec, LDA, LSTM을 이용한 현대인의 감정 분석을 중심으로 - (Analysis of whether the feeling of relative deprivation is shown in the comments of the Luxury Howl YouTube video - Focusing on modern sentiment analysis using TF-IDF, Word2vec, LDA and LSTM -)

  • 최정민;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.355-360
    • /
    • 2021
  • 최근 유튜브가 큰 인기를 얻고 있다. 많은 연구에 따르면 소셜 미디어에서 상대적 박탈감이 나타나듯이 본 연구에서는 유튜브에서도 상대적 박탈감이 나타나는지 확인해보고자 한다. 그중에서도 유튜버의 경제적 지위를 잘 드러내는 명품 하울 영상을 중심으로 연구를 진행하였다. 명품 하울이란 많은 양의 명품 제품을 구매하여 보여주는 콘텐츠를 의미한다. LDA, TF-IDF, Word2Vec 기법을 이용하여 유튜브 댓글 분석을 진행하였다. 추가로 LSTM 학습 모델을 기반으로 댓글을 긍정적 그룹과 부정적 그룹으로 분류하였다. 연구 결과에 따르면 다수의 댓글이 긍정적인 의미를 내포하지만, 상대적 박탈감 등을 나타내는 부정적 의미의 키워드를 가진 댓글도 나타났다. 이러한 댓글에서는 자신과 유튜버의 경제적 모습을 비교하는 표현이 등장하였다. 특히 유튜버의 나이가 상대적으로 어리거나 스스로 명품제품을 구매할 능력이 되지 않은 것으로 보이면 상대적 박탈감을 표현하는 댓글이 증가하였다. 따라서 본 연구에서는 유튜브도 다른 소셜 미디어와 같이 이용자가 상대적 박탈감을 느낀 다는 것을 확인 할 수 있었다.

크라우드 소싱 기반의 지역 교통 이벤트 검출 기법 (Crowdsourcing based Local Traffic Event Detection Scheme)

  • 김윤아;최도진;임종태;김상혁;김종훈;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제22권4호
    • /
    • pp.83-93
    • /
    • 2022
  • 운전자가 모바일기기를 사용하여 직접 교통 정보를 제공하는 크라우드 소싱을 활용하여 교통 문제를 해결하려는 연구들이 진행 중이다. 크라우드 소싱을 통해 수집된 데이터를 교통 이벤트 검출에 사용한다면 관련된 데이터를 수집하는 작업이 줄어들어 시간 비용이 낮아지고 정확도는 높아지는 장점이 있다. 본 논문에서는 크라우드 소싱을 활용하여 교통과 관련된 데이터를 수집하고, 이를 통해 교통에 영향을 미치는 이벤트를 검출하는 기법을 제안한다. 제안하는 기법은 대용량 데이터 처리를 위해 기계 학습 알고리즘을 사용하여 수집된 데이터의 이벤트 유형을 판별한다. 또한, 이벤트가 발생된 위치를 추출하기 위하여 수집된 데이터에서 위치를 나타내는 키워드를 추출하고 키워드의 행정구역을 반환한다. 이를 통해 기존 제공되는 위치 정보에서 광범위하게 정의된 위치나 잘못된 위치 정보를 해결할 수 있다. 제안하는 기법의 타당성을 입증하기 위해 다양한 성능 평가를 수행한다.

텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로 (Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services)

  • 윤혜진;김창식;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.513-519
    • /
    • 2018
  • 본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.

미술관의 소셜플랫폼 역할과 관람객 체험 (A Study on the Role of Art Museums and Experience of Museum Visitors Based on Social Platform)

  • 구보경
    • 트랜스-
    • /
    • 제9권
    • /
    • pp.67-92
    • /
    • 2020
  • 소셜플랫폼과 기술의 발전 덕분에 온라인 커뮤니케이션이 일상화 되면서 자신의 감정, 생각, 경험 등을 인터넷에 표현하는 것은 지극히 일반적인 일상이 되었다. 특히 SNS는 자신을 쉽게 표현하는 동시에 다른 이용자들과 교류할 수 있는 대표적 플랫폼이다. 개인의 소소한 일상부터 무엇을 하고 어떤 경험을 했는지 SNS로 소통하는 방식이 보편화되었다. 이에 따라 미술관은 관람객들의 참여와 관심을 끌어내기 위해 다양한 시도를 하고 있다. 관람객들을 끌어들여 놀이와 학습을 동시에 즐길 수 있는 콘텐츠 기반의 프로그램 및 환경을 제공하고 있다. 본 논문은 신기술의 발전과 이를 수용한 미술관 환경의 변화와 함께 단순한 감상에 그치지 않고 일상의 소통방식이 미술관 관람에서도 어떻게 나타나는가를 탐색할 것이다. 이를 통해 SNS을 비롯한 모바일 기반 소통이 미술관 관람의 질적 다양성을 제공하고, 의미있는 미술관 경험으로 완성될 수 있으며, 이에 따른 경험의 플랫폼으로서 미술관, 더 나아가 기술수용에 따른 문화예술기관의 다양한 역할과 기능을 제시하고자 한다.

  • PDF

BERT 언어 모델을 이용한 감정 분석 시스템 (Sentiment Analysis System by Using BERT Language Model)

  • 김택현;조단비;이현영;원혜진;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

악성 댓글에 사용된 문자의 형태를 고려한 한국어 자연어처리를 위한 전처리 기법 (Preprocessing technique for natural language processing considering the form of characters used in malicious comments)

  • 김해수;김미희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.543-545
    • /
    • 2022
  • 최근 악플에 대한 논란이 끊이지 않고 있어 이것을 해결하기위한 방법으로 자연어 처리를 이용하고 있다. 특히 소셜 미디어, 온라인 커뮤니티에서 많이 발생하고 있고 해당 매체에서는 한글을 그대로 사용하지 않고 그들의 은어를 섞어서 사용하며 그중에서 한글이 아닌 문자를 섞어서 만들어낸 문장도 있다. 이러한 문장은 기존의 모델에 학습된 데이터의 형태와 다르며 한글이 아닌 문장이 많을수록 모델의 예측이 부정확해진다는 단점이 있어 본 논문에서는 인공지능을 이용한 이미지 분류와 띄어쓰기, 오타 교정을 이용한 전처리 기법을 제안한다.

대학생의 성격유형이 대학도서관 정보이용행태와 만족도에 미치는 영향 연구: 교양학습을 중심으로 (A Study on the Effect of Personality Types of College Students on Information Use Behavior and Satisfaction for University Libraries: Focusing on Cultural Learning)

  • 이태희;장우권
    • 정보관리학회지
    • /
    • 제41권3호
    • /
    • pp.205-247
    • /
    • 2024
  • 이 연구의 목적은 대학생들을 대상으로 교양학습을 위해 성격유형별로 정보이용행태와 만족도가 어떻게 나타나고 있는지를 조사하여, 대학도서관에서 대학생의 학업에 도움을 줄 수 있는 이용자 맞춤형 정보서비스 방안을 제안하는데 있다. 이를 위해 C대학교에 재학 중인 대학생 169명을 대상으로 설문조사를 하였다. 분석은 인구통계학적 특성, MBTI 성격유형, 정보이용행태, 만족도, 대학도서관 서비스 인식조사로 이루어졌다. 수집된 데이터는 SPSS 29 통계프로그램을 사용하여 빈도분석, 교차분석, 다항 로지스틱 회귀분석, 일원배치 분산분석(ANOVA), 위계적 회귀분석을 실시하였다. 연구의 결과, 첫째, 성격유형에 따른 정보이용행태는 '선호정보원', '정보원 고려요소', '정보수집패턴'에서 유의한 결과가 나타났다. 둘째, 성격유형에 따른 만족도는 '시스템 활용 능력', '자료 선별 능력', '학습활동 유용성 인지 정도'에 통계적으로 유의한 차이를 보였다. 셋째, 성격유형과 정보이용행태에 따른 만족도는 선호정보원과 만족도 간의 영향관계에서 다양한 주제 자료가 혼재되어 있고, 학문적인 심도나 전문성이 부족한 경우 반비례 관계인 것에 반해, '소셜미디어' 선호도는 '탐색결과 만족도'와 비례해 교양학습에 있어 다양한 시각과 관점을 제공해주어 정적 관계를 나타내는 것으로 보인다. 따라서 C대학교 대학생들은 교양학습을 위한 정보추구에서 성격유형에 따라 정보이용행태와 만족도에 영향을 미치는 것으로 나타났다.

소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구 (Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration)

  • 안동욱;임춘성
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.23-34
    • /
    • 2019
  • 최근 디지털 플랫폼을 활용한 민생 위협 범죄는 '15년 약 14만여 건, '16년 약 15만여 건 등 사이버범죄 지속 증가 추이이며 전통적인 수사기법을 통한 온라인 범죄 대응에 한계가 있다고 판단되고 있다. 현행 수기 온라인 검색 및 인지 수사 방식만으로는 빠르게 변화하는 민생 위협 범죄에 능동적으로 대처 할 수 없으며, 소셜 미디어 특성상 불특정 다수에게 게시되는 콘텐츠로 이루어 졌다는 점에서 더욱 어려움을 겪고 있다. 본 연구는 민생 침해 범죄가 발생하는 온라인 미디어의 특성을 고려한 콘텐츠 웹 수집 방식 중 사이트 중심의 수집과 Open API를 통한 방식을 제시한다. 또한 불법콘텐츠의 특성상 신속히 게시되고 삭제되며 신조어, 변조어 등이 다양하고 빠르게 생성되기 때문에 수작업 등록을 통한 사전 기반 형태소 분석으로는 빠른 인지가 어려운 상황이다. 이를 해소 하고자 온라인에서 벌어지는 민생 침해 범죄를 게시하는 불법 콘텐츠를 빠르게 인지하고 대응하기 위한 데이터 전처리인 WPM(Word Piece Model)을 통하여 기존의 사전 기반의 형태소 분석에서 토크나이징 방식을 제시한다. 데이터의 분석은 불법 콘텐츠의 수사를 위한 지도학습 기반의 분류 알고리즘 모델을 활용, 투표 기반(Voting) 앙상블 메소드를 통하여 최적의 정확도를 검증하고 있다. 본 연구에서는 민생경제를 침해하는 범죄를 사전에 인지하기 위하여 불법 다단계에 대한 사례를 중심으로 분류 알고리즘 모델을 활용하고, 소셜 데이터의 수집과 콘텐츠 수사에 대하여 효과적으로 대응하기 위한 실증 연구를 제시하고 있다.

  • PDF