현대사회의 기업들은 소셜 미디어, 제품 리뷰, 고객 피드백 등 다양한 영역에 걸쳐 소비자 의견을 정확하게 이해하는 것이 경쟁에서 성공하기 위한 주요 과제임을 강조하며 감성 분류를 점점 더 중요한 작업으로 채택하고 있다. 감성 분류는 소비자의 다양한 의견과 감성을 파악하여 제품이나 서비스 개선에 도움을 주는 이유로 많은 연구가 진행중이다. 감성 분류에서는 대규모 데이터 셋과 사전 학습된 언어 모델을 통한 미세 조정이 성능 향상에 중요한 역할을 한다. 최근 인공지능 기술의 발전으로 감성 분류 모델은 높은 성능을 보이고 있으며, 특히 ELECTRA 모델은 효율적인 학습 방법과 적은 컴퓨팅 자원을 통해 뛰어난 결과를 제공한다. 따라서 본 논문에서는 ELECTRA에서 한국어를 학습한 KoELECTRA 모델을 이용하여 다양한 데이터 셋에 대한 효율적인 미세 조정을 통해 감성 분류 성능을 향상하는 방법을 제안한다.
최근에 빅 데이터와 AI 기술을 교육의 평가와 개별 학습에 적용하는 연구 성과가 있었다. 정보 기술의 혁신으로 소셜 미디어, MOOC, 지능형 개인지도 시스템, LMS, 센서 및 모바일 장치 등으로부터 학생들의 개인 기록, 생리학적 데이터, 학습 로그 및 활동, 학습 성과 및 결과를 포함하는 동적이고 복잡한 데이터를 수집 가능하였다. 또한 COVID-19 환경에서 e-러닝이 활성화 되어 많은 양의 학습 데이터가 생성되었다. 이 데이터로부터 학습 분석과 AI 기술을 적용하여 의미있는 패턴의 추출과 지식의 발견이 될 것으로 예상된다. 학습자 측면에서 학생의 학습 및 정서적 행동 패턴과 프로필을 식별하고, 평가 및 평가 방법을 개선하고, 개별 학생의 학습 성과 또는 중퇴를 예측하고, 개인화 된 지원을 위한 적응 시스템에 대한 연구는 필요하다. 본 연구에서는 교육용 데이터를 대상으로 이상탐지와 추천시스템에서 사용하는 기계학습 기술에 대한 조사와 분류를 하여 교육 분야의 연구에 기여하고자 한다.
최근 유튜브가 큰 인기를 얻고 있다. 많은 연구에 따르면 소셜 미디어에서 상대적 박탈감이 나타나듯이 본 연구에서는 유튜브에서도 상대적 박탈감이 나타나는지 확인해보고자 한다. 그중에서도 유튜버의 경제적 지위를 잘 드러내는 명품 하울 영상을 중심으로 연구를 진행하였다. 명품 하울이란 많은 양의 명품 제품을 구매하여 보여주는 콘텐츠를 의미한다. LDA, TF-IDF, Word2Vec 기법을 이용하여 유튜브 댓글 분석을 진행하였다. 추가로 LSTM 학습 모델을 기반으로 댓글을 긍정적 그룹과 부정적 그룹으로 분류하였다. 연구 결과에 따르면 다수의 댓글이 긍정적인 의미를 내포하지만, 상대적 박탈감 등을 나타내는 부정적 의미의 키워드를 가진 댓글도 나타났다. 이러한 댓글에서는 자신과 유튜버의 경제적 모습을 비교하는 표현이 등장하였다. 특히 유튜버의 나이가 상대적으로 어리거나 스스로 명품제품을 구매할 능력이 되지 않은 것으로 보이면 상대적 박탈감을 표현하는 댓글이 증가하였다. 따라서 본 연구에서는 유튜브도 다른 소셜 미디어와 같이 이용자가 상대적 박탈감을 느낀 다는 것을 확인 할 수 있었다.
운전자가 모바일기기를 사용하여 직접 교통 정보를 제공하는 크라우드 소싱을 활용하여 교통 문제를 해결하려는 연구들이 진행 중이다. 크라우드 소싱을 통해 수집된 데이터를 교통 이벤트 검출에 사용한다면 관련된 데이터를 수집하는 작업이 줄어들어 시간 비용이 낮아지고 정확도는 높아지는 장점이 있다. 본 논문에서는 크라우드 소싱을 활용하여 교통과 관련된 데이터를 수집하고, 이를 통해 교통에 영향을 미치는 이벤트를 검출하는 기법을 제안한다. 제안하는 기법은 대용량 데이터 처리를 위해 기계 학습 알고리즘을 사용하여 수집된 데이터의 이벤트 유형을 판별한다. 또한, 이벤트가 발생된 위치를 추출하기 위하여 수집된 데이터에서 위치를 나타내는 키워드를 추출하고 키워드의 행정구역을 반환한다. 이를 통해 기존 제공되는 위치 정보에서 광범위하게 정의된 위치나 잘못된 위치 정보를 해결할 수 있다. 제안하는 기법의 타당성을 입증하기 위해 다양한 성능 평가를 수행한다.
본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.
소셜플랫폼과 기술의 발전 덕분에 온라인 커뮤니케이션이 일상화 되면서 자신의 감정, 생각, 경험 등을 인터넷에 표현하는 것은 지극히 일반적인 일상이 되었다. 특히 SNS는 자신을 쉽게 표현하는 동시에 다른 이용자들과 교류할 수 있는 대표적 플랫폼이다. 개인의 소소한 일상부터 무엇을 하고 어떤 경험을 했는지 SNS로 소통하는 방식이 보편화되었다. 이에 따라 미술관은 관람객들의 참여와 관심을 끌어내기 위해 다양한 시도를 하고 있다. 관람객들을 끌어들여 놀이와 학습을 동시에 즐길 수 있는 콘텐츠 기반의 프로그램 및 환경을 제공하고 있다. 본 논문은 신기술의 발전과 이를 수용한 미술관 환경의 변화와 함께 단순한 감상에 그치지 않고 일상의 소통방식이 미술관 관람에서도 어떻게 나타나는가를 탐색할 것이다. 이를 통해 SNS을 비롯한 모바일 기반 소통이 미술관 관람의 질적 다양성을 제공하고, 의미있는 미술관 경험으로 완성될 수 있으며, 이에 따른 경험의 플랫폼으로서 미술관, 더 나아가 기술수용에 따른 문화예술기관의 다양한 역할과 기능을 제시하고자 한다.
감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.
최근 악플에 대한 논란이 끊이지 않고 있어 이것을 해결하기위한 방법으로 자연어 처리를 이용하고 있다. 특히 소셜 미디어, 온라인 커뮤니티에서 많이 발생하고 있고 해당 매체에서는 한글을 그대로 사용하지 않고 그들의 은어를 섞어서 사용하며 그중에서 한글이 아닌 문자를 섞어서 만들어낸 문장도 있다. 이러한 문장은 기존의 모델에 학습된 데이터의 형태와 다르며 한글이 아닌 문장이 많을수록 모델의 예측이 부정확해진다는 단점이 있어 본 논문에서는 인공지능을 이용한 이미지 분류와 띄어쓰기, 오타 교정을 이용한 전처리 기법을 제안한다.
이 연구의 목적은 대학생들을 대상으로 교양학습을 위해 성격유형별로 정보이용행태와 만족도가 어떻게 나타나고 있는지를 조사하여, 대학도서관에서 대학생의 학업에 도움을 줄 수 있는 이용자 맞춤형 정보서비스 방안을 제안하는데 있다. 이를 위해 C대학교에 재학 중인 대학생 169명을 대상으로 설문조사를 하였다. 분석은 인구통계학적 특성, MBTI 성격유형, 정보이용행태, 만족도, 대학도서관 서비스 인식조사로 이루어졌다. 수집된 데이터는 SPSS 29 통계프로그램을 사용하여 빈도분석, 교차분석, 다항 로지스틱 회귀분석, 일원배치 분산분석(ANOVA), 위계적 회귀분석을 실시하였다. 연구의 결과, 첫째, 성격유형에 따른 정보이용행태는 '선호정보원', '정보원 고려요소', '정보수집패턴'에서 유의한 결과가 나타났다. 둘째, 성격유형에 따른 만족도는 '시스템 활용 능력', '자료 선별 능력', '학습활동 유용성 인지 정도'에 통계적으로 유의한 차이를 보였다. 셋째, 성격유형과 정보이용행태에 따른 만족도는 선호정보원과 만족도 간의 영향관계에서 다양한 주제 자료가 혼재되어 있고, 학문적인 심도나 전문성이 부족한 경우 반비례 관계인 것에 반해, '소셜미디어' 선호도는 '탐색결과 만족도'와 비례해 교양학습에 있어 다양한 시각과 관점을 제공해주어 정적 관계를 나타내는 것으로 보인다. 따라서 C대학교 대학생들은 교양학습을 위한 정보추구에서 성격유형에 따라 정보이용행태와 만족도에 영향을 미치는 것으로 나타났다.
최근 디지털 플랫폼을 활용한 민생 위협 범죄는 '15년 약 14만여 건, '16년 약 15만여 건 등 사이버범죄 지속 증가 추이이며 전통적인 수사기법을 통한 온라인 범죄 대응에 한계가 있다고 판단되고 있다. 현행 수기 온라인 검색 및 인지 수사 방식만으로는 빠르게 변화하는 민생 위협 범죄에 능동적으로 대처 할 수 없으며, 소셜 미디어 특성상 불특정 다수에게 게시되는 콘텐츠로 이루어 졌다는 점에서 더욱 어려움을 겪고 있다. 본 연구는 민생 침해 범죄가 발생하는 온라인 미디어의 특성을 고려한 콘텐츠 웹 수집 방식 중 사이트 중심의 수집과 Open API를 통한 방식을 제시한다. 또한 불법콘텐츠의 특성상 신속히 게시되고 삭제되며 신조어, 변조어 등이 다양하고 빠르게 생성되기 때문에 수작업 등록을 통한 사전 기반 형태소 분석으로는 빠른 인지가 어려운 상황이다. 이를 해소 하고자 온라인에서 벌어지는 민생 침해 범죄를 게시하는 불법 콘텐츠를 빠르게 인지하고 대응하기 위한 데이터 전처리인 WPM(Word Piece Model)을 통하여 기존의 사전 기반의 형태소 분석에서 토크나이징 방식을 제시한다. 데이터의 분석은 불법 콘텐츠의 수사를 위한 지도학습 기반의 분류 알고리즘 모델을 활용, 투표 기반(Voting) 앙상블 메소드를 통하여 최적의 정확도를 검증하고 있다. 본 연구에서는 민생경제를 침해하는 범죄를 사전에 인지하기 위하여 불법 다단계에 대한 사례를 중심으로 분류 알고리즘 모델을 활용하고, 소셜 데이터의 수집과 콘텐츠 수사에 대하여 효과적으로 대응하기 위한 실증 연구를 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.