• Title/Summary/Keyword: 소성 영역

Search Result 306, Processing Time 0.029 seconds

A Study on the Plastic Zone of the Specimen at the Impact of Dynamic Load (동하중 충격시에 시험편의 소성영역에 관한 연구)

  • 한문식;조재웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-144
    • /
    • 2004
  • Dynamic crack initiation in ductile steel is investigated by means of impact loaded 3 point bend(PB) specimens. Results from non-viscoplastic and viscoplastic materials are compared. Their materials are applied with various impact velocities and static strain rates. The specimen has the size 320${\times}$750 mm with a thickness of 10 mm. A modified 3PB specimen design with reduced width at the ends has been developed in order to avoid the initial compressive load of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations are made by using the FEM code ABAQUS. Therefore, their results are plotted by shapes of the von Mises plastic stress and equivalent plastic strain of the specimens applied by various impact velocities.

Length of Plastic Hinge in RC Columns under Cyclic Loading (반복 하중을 받는 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Choi, Im-Jun;Moon, Cho-Hwa;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.11-12
    • /
    • 2009
  • The small height to depth ratio column dominated by shear after tension steel yielded and the energy dissipation capacity reduce remarkably due to the affection of axial force. This procedure incur in the plastic hinge region and not in all of the region at the same time but from somewhere where the energy was concentrated. This study was reported about the variation of length of the plastic hinge under cyclic loading of the RC columns through the test.

  • PDF

An evaluation of load of the steel bar straightener using plastic moment (소성모멘트를 이용한 철근 직선화 장치의 하중 분석)

  • 이동호;박수진;손정현;유완석
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.196-200
    • /
    • 2002
  • In this paper, the straightening process of a steel bar straightener is studied. The straightener carries out the bending and reverse bending process repeatedly. Plastic theory is employed for the analysis of roller-supporting-load, and the residual stress and the axial load of a steel bar are calculated by using the bending moment. The Bauschinger effect and plastic moment are calculated by using the residual stress and Swift's method respectively. It is verified from the experiments that the displacement calculated from theory makes it possible to straighten a steel bar.

Variation of Frit Size and Firing Conditions for High Transmittance in $P_2O_5$-ZnO-RO Glass System ($P_2O_5$-ZnO-RO 유리계의 고 투과율 특성을 위한 프릿 크기 및 소성조건의 변화)

  • 차명룡;전재삼;정병해;김형순
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.197-197
    • /
    • 2003
  • 현재 PDP(Plasma Display Panel) 투명유전체층은 PbO 계열을 사용하고 있으나 제조공정 시 다량의 중금속 페기물이 방출됨에 따라 환경오염을 야기시킴으로 무연조성이며 저온소성이 가능한 저융점유리인 인산염계 유리에 대한 열적, 화학적, 광학적 특성에 대해 체계적인 연구가 진행되었다. 광학적 특성을 위 한 승온속도, 소성온도, 유지시간의 변화 그리고, 프릿 입도에 따른 광 투광성, 기포의 형성, 그리고 기포의 분포특성을 연구하였다. 열적특성은 DTA와 TMA를 이용하여 유리전이점(Tg) 및 선팽창계수(CTE)와 Littleton softning point (Ts)가 측정되었다. 광학적특성은 스크린프린팅법으로 후막 제조 후 소성하여 UV-visible spectrometer을 이용하여 300~800nm영역에서 투광성을 측정하였으며, FEG-SEM, AFM을 이용해 표면을 관찰하였다. 결과로써, Tg는 440-46$0^{\circ}C$ 와 CTE는 7~8.5$\times$$10^{-6}$K값을 보였고 높은 화학적 내구성과 60-80%의 광투과율을 나타내었다. 프릿의 미세화, 숭온속도의 감소는 기포의 생성을 줄이는데 효과를 보였으며, 그 결과 양호한 광투과율을 얻을 수 있었다. 이러한 결과에 따르면, P$_2$O$_{5}$-ZnO-RO 조성은 PDP용 투명유전체 조성으로써 기존의 PbO계열을 대체할만한 새로운 조성으로 고려된다.

  • PDF

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.

The Power Loss Characteristics of Mn-Zn Ferrites at MHz Region with Sintering Condition (소성조건에 따른 MHz 대역의 Mn-Zn ferrite 전력손실 특성)

  • Suh J.J.;Song B.M
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.26-31
    • /
    • 2003
  • The power loss characteristics of Mn-Zn ferrite were observed with the sintering temperature. In case of $1150 ^{\circ}C$ sintering, the core loss increased with measuring temperature, and does not have minimum value at the point where the magnetocrystalline anisotropy be 'zero'. This reason mainly due to the change of core loss mechanism with grain size which affects residual loss. The grain size and sintered density slightly increased with equilibrium oxygen partial pressure at$ 1150 ^{\circ}C$ sintering. The resistivity and initial permeability showed no significance with atmosphere, these results due to complex effect of $Fe^{2+}$ concentration and microstructure change. The core loss at $100^{\circ}C$ decreased as the equilibrium oxygen partial pressure increased.e increased.

Strain-Softening Behavior of Circular Tunnel Excavated in Mohr-Coulomb Rock Mass (Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.495-505
    • /
    • 2006
  • Calculating the distribution of stresses and displacements around a circular tunnel excavated in infinite isotropic rock mass subjected to hydrostatic stress condition is one of the basic problems in rock engineering. While closed-form solutions for the distribution are known if rock masses are considered as elastic, perfectly plastic, or brittle-plastic media, a few numerically approximated solutions based on various simplifying assumptions have been reported for strain-softening rock mass. In this study, a simple numerical method is introduced for the analysis of strain-softening behavior of the circular tunnel in Mohr-Coulomb rock mass. The method can also applied to the analysis of the tunnel in brittle-plastic or perfectly plastic media. For the brittle-plastic case where closed-formsolution exists, the performance of the present method is verified by showing an excellent agreement between two solutions. In order to demonstrate the strain-softening behaviors predicted by the proposed method. a parameter study for a softening index is given and the construction of ground reaction curves is carried out. The importance of defining the characteristics of dilation in plastic analysis is discussed through analyzing the displacements near the surface of tunnel.

Low Temperature Sintering and Dielectric Properties of Low Dielectric Constant/Loss for LTCC Wiring Substrate (저유전율/저손실 LTCC 배선 기판의 저온소결 및 유전특성)

  • Choi, Young-Jin;Park, Jeong-Hyun;Ko, Won-Jun;Park, Jae-Hwan;Park, Jae-Gwan;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.714-717
    • /
    • 2004
  • 알루미노 보로실리케이트계 유리 기본조성 중 알칼리 토류 산화물의 종류 및 함량 변화에 따른 저유전율/저 LTCC 배선 기판의 저온 소성 거동 및 유전 특성을 조사하였다 알칼리 토류 산화물의 종류 및 함량 변화를 통해서 LTCC의 적정 소성온도인 $875^{\circ}C$ 부근을 포함하는 넓은 대역으로 소성수축이 시작되는 온도를 제어할 수 있었으며 유리 프리트와 알루미나 필러의 배합 비율의 변화에 따른 소성거동 및 유전특성의 변화 거동을 조사하였다. 알칼리 토류 산화물 중 유리 조성내의 CaO의 함량이 증가할수록 유리전이점 및 연화점을 증가하는 경향을 보였으며, 알루미나 필러의 첨가량이 증가할수록 소성수축이 시작되는 온도영역은 상향되고 유전율 및 품질계수는 증가하였다. 알칼리 토류 산화물의 조성과 필러인 알루미나의 함량을 제어함으로서 $875^{\circ}C$에서 18% 이상의 선수축율과 유전율 $5.1\sim5.5$ 및 유전손실 0.1% 이하의 우수한 특성을 갖는 저온소결용 LTCC 배선 기판을 얻을 수 있었다.

  • PDF

Modified Rectangular Stress Block for High Strength RC Columns to Axial Loads with Bidirectional Eccentricities (2축 편심 축력을 받는 고강도 콘크리트 기둥의 수정 등가응력블럭)

  • Yoo, Suk-Hyeong;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.335-343
    • /
    • 2003
  • In the previous experimental study, it is verified that the ultimate strain of concrete (${\varepsilon}$$_{cu}$=0.003) and coefficient of equivalent stress block (${\beta}$$_1$) can be used for the analysis of RC beams under biaxial and uniaxial bending moment. However, the characteristics of stress distribution of non rectangular compressed area in the RC columns are different to those of rectangular compressed area. The properties of compressive stress distribution of concrete have minor effect on the pure bending moment such as beams, but for the columns subjected to combined axial load and biaxial bending moment, the properties of compressive stress distribution are influencing factors. Nevertheless, in ACI 318-99 code, the design tables for columns subjected to axial loads with bidirectional eccentricities are based on the parameters recommended for rectangular stress block(RSB) of rectangular compressed areas. In this study the characteristics of stress distribution through both angle and depth of neutral axis are observed and formulated rationally. And the modified parameters of rectangular stress block(MRSB) for non rectangular compressed area is proposed. And the computer program using MRSB for the biaxial bending analysis of RC columns is developed and the results of MRSB are compared to RSB and experimental results respectively.