• Title/Summary/Keyword: 소성변형능력

Search Result 81, Processing Time 0.025 seconds

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

Experimental Investigation on Deformation Capacity of CFT Column to H-Steel Beam Connections (콘크리트충전 각형기둥-H형강보 접합부의 변형능력에 관한 실험적 연구)

  • Kim, Young Ju;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.113-121
    • /
    • 2004
  • A test program was conducted on full-scale steel moment connections constructed using a T-stiffener. In the T-stiffener connection, the beam-to-column connection was reinforced with the horizontal and vertical element of the T-stiffener to resist moment under severe cyclic loads. A total of five specimens were tested in this study together with a concrete-filled tubular(CFT) column(${\sqsubset}-500{\times}500{\times}12$) and a steel beam($H-506{\times}201{\times}11{\times}19$). For the specimens, the T-stiffener was combined with RBS (also known as "Dog-bone") detail or Horizontal Element Hole(HEH) detail constructed to enhance deformation capacity. The test program showed excellent seismic performance for specimens constructed with an RBS or an HEH. except the specimens had brittle failure of VE. The test results also showed that the connections all developed maximum moments at the face of the column. Such moments were at least 15% and as much as 36% larger than the plastic moment capacity of the beam. based on the actual yield stress of the beam steel.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method (할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배)

  • Park, Hong-Gun;Kim, Chang-Soo;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.221-224
    • /
    • 2008
  • A secant stiffness linear analysis method was developed for moment redistribution of moment-resisting frames. In the proposed method, rotational spring models are used for plastic hinges of the members whose flexural moments are needed to be redistributed. At the plastic hinges, secant stiffness is used to address the effect of the flexural stiffness reduced by inelastic deformation. Linear analysis is repeated with adjusted secant stiffness until the flexural equilibrium is satisfied in the structure and members. By using the secant stiffness analysis, the effect of the inelastic deformation on the moment redistribution can be considered. Further, the safety of plastic hinges can be evaluated by comparing the inelastic rotation resulting from the secant stiffness analysis with the rotational capacity of the plastic hinges. For verification, the proposed method was applied to a continuous beam tested in previous study. A application example for a multiple story moment-resisting frame was presented.

  • PDF

Evaluation of Flexural Ductility of Negative Moment Region of I-Girder with High Strength Steel (고강도 강재 적용 I-거더의 부모멘트부 휨연성 평가)

  • Joo, Hyunsung;Moon, Jiho;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.513-523
    • /
    • 2010
  • For continuous I-girder bridges, a large negative bending moment is generated near pier region so that plastic hinge is first formed at this point. Then, the bending moment is redistributed when the I-girder has enough flexural ductility (or rotational capacity). However, for I-girder with high strength steel, it is known that the flexural ductility is considerably decreased by increasing the yield strength of material. Thus, it is necessary to conduct a study for guaranteeing proper flexural ductility of I-girder with high-strength steel. In this study, the evaluation of flexural ductility of negative moment region of I-girder with high strength steel where yield stress of steel is 680 MPa is presented based on the results of finite element analysis and experiment. From the results, it is found that the flexural ductility of the I-girder is significantly reduced due to the increase of elastic deformation and the decrease of plastic deformation ability of the material when the yield strength increases. In this study, the method to improve the flexural ductility of I-girder with high strength steel is proposed by an unequal installation of cross beam and an optimal position of cross beam is also suggested. Finally, the effects of the unequal installation of cross beam on the flexural ductility are discussed based on the experimental results.

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Evaluation of Seismic Performance for Building Structures by Hysteresis Model of Elements (부재의 이력모델에 따른 건축구조물의 내진성능 평가)

  • Han, Duck-Jeon;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2009
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. But, it is difficulty that predict the building behavior of actual and exact in simplified load-deformation relation of structural material and members. In this study, system ductility and story ductility capacity of building structure used to the Backbone hinge Model are estimated and compared considering the characteristics of load-deformation relation of structural material and members. Analyses results, bilinear hinge model has lower system ductility and story ductility demands than those of backbone hinge model.

  • PDF

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

Seismic Improvement of Staggered Truss Systems using Buckling Restrained Braces (비좌굴 가새를 이용한 스태거드 트러스 시스템의 내진성능향상)

  • Kim, Jin-Koo;Lee, Joon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper the seismic performances of 4, 10, and 30-story staggered truss systems (STS) were evaluated by observing the force-displacement relationship up io failure. The results were compared with the seismic performance of conventional moment resisting frames and braced frames. According to the analysis results, the STS showed relatively satisfactory lateral load resisting capability. However, in the mid- to high-rise STS, plastic hinges formed first at the chords were transferred to vertical members of the vierendeel panels, which formed a week link and subsequently leaded to brittle collapse of the structure. Therefore to enhance the ductility of STS it would be necessary to reinforce the vertical bracing members of the virendeel panels so that the plastic hinges, once toned in cord members of a virendeel panel, spread out to virendeel panels of neighboring stories.