• Title/Summary/Keyword: 소성변형각

Search Result 151, Processing Time 0.021 seconds

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

The Parameters of the Bounding Surface Plasticity Model in the Isotropically Consolidated Clay (등방압밀점토에서 항복경계면 소성모델의 매개변수)

  • 이영생;김원영
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.21-32
    • /
    • 1996
  • To predict the stress-strain behavior of the soil more approximately, the concept of the critical state soil mechanics was added to the plasticity increment theory in the bounding surface Plasticity model. This model was constituted with two ellipse and one hyperbola in older to describe the behaviour of the isotropically consolidated soil. Thus, this model is very complicate due to the various parameters used. Therefore, the accurate understanding and skill of the theory is required in order to apply this model to the practical geotechnical problems. In the present paper, the bounding surface shape paraiheter R and A, the mapping center parameter C among various parameters used were varied and the results were numerically analized. Finally, each sensitivity with respect to monotonic and cyclic loading was analized and the range of the value of the each parameter was proposed.

  • PDF

A Study on Strength Characteristic Variation as amount of Plastic Deformation and Strength Anisotrophy for ECAP Al 2024 Alloy (ECAP Al 2024 합금의 소성변형량에 따른 강도 특성 및 이방성 연구)

  • Choi J. W.;Ma Y. W.;Yoon K. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.283-286
    • /
    • 2005
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes nanocrystalline grained texture material. To measure the strength of that, small punch (SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to $\varphi12mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al 2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

  • PDF

Limit State Assessment of SCH80 3-inch Steel Pipe Elbows Using Moment-Deformation Angle Relationship (모멘트-변형각의 관계를 이용한 SCH80 3인치 강재배관엘보의 한계상태 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • To conduct probabilistic seismic fragility analysis for nuclear power plants, it is very important to define the failure modes and criteria that can represent actual serious accidents. The seismic design criteria for piping systems, however, cannot fully reflect serious accidents because they are based on plastic collapse and cannot express leakage, which is the actual limit state. Therefore, it is necessary to clearly define the limit state for reliable probabilistic seismic fragility analysis. Therefore, in this study, the limit state of the SCH80 3-inch steel pipe elbow, the vulnerable part of piping systems, was defined as leakage, and the in-plane cyclic loading test was conducted. Moreover, an attempt was made to quantify the failure criteria for the steel pipe elbow using the damage index, which was based on the dissipated energy that used the moment-deformation angle relationship.

Study on the Burr Formation and Fracture at the Exit Stage in Orthogonal Cutting (2차원절삭에서 공구이탈시 발생하는 버(Burr)와 파단에 관한 연구)

  • 고성림
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1172-1182
    • /
    • 1993
  • In orthogonal machining a quantitative model for burr formation process and fracture when tool exits workpiece is proposed. When no fracture during burr formation burr formation process is divided by three parts; Initiation, Development and Final burr formation. According to the properties of workpiece fracture will happen or not after initiation of burr formation. Considering the fact that fracture depends on the ductility of workpiece, the fracture strain obtained from ductile fracture criterion is used for prediction. It is verified that the fracture strain from tension test can be used as fracture criterion in burr formation without large error. For detailed observation of burr formation an experimental stage for micro orthogonal cutting inside SEM (Scanning Electron Microscope) is built. Through the comparison between model prediction and experimental result from orthogonal machining in milling machine the model is verified.

Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load (감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰)

  • Lee, Sung-Ho;Lee, Jeong-Keun;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1293-1298
    • /
    • 2010
  • In most power plants, wall thinning in carbon-steel pipes due to flow-accelerated corrosion is one of the major aging phenomena, and it reduces the load-carrying capacity of the piping system. Various types of wall-thinning defects were manufactured in real-scale elbows, and monotonic in-plane bending tests were performed under internal pressure to evaluate the failure behavior of the elbows. In this paper, the behavior of elastic and plastic limit leads of locally thinned elbows in a real-scale failure test is presented. The loads determined on the basis of TES (twice elastic slope) were considered to be the limit loads of locally thinned elbows so that the integrity of the thinned elbows could be maintained, even when a small amount of plastic deformation might have occurred.

ECAP공정에서 금형의 단면형상이 공정에 미치는 영향

  • 노일주;채수원;권숙인;김명호;황선근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.81-81
    • /
    • 2004
  • 등통로각압축(ECAP, Equal Channel Angular Pressing)공정은 다결정의 재료 덩어리를 두 채널(channel)이 일정하게 교차하는 형태의 금형에 통과시켜 단면적과 단면 형상의 큰 변화 없이 압출하는 성형법으로 다른 공정에 비해 상대적으로 낮은 압력으로 재료에 소성변형을 발생시켜 입자를 미세화 시킬 수 있으며, 기존의 분말야금에 의한 방법에 비해 상용재료를 포함한 광범위한 금속 및 합금에 적용이 용이한 점과 재료 내부에 기포가 거의 잔류하지 않는 점등의 장점을 가지고 있다.(중략)

  • PDF

Constitutive Relation of Concrete to Predict P-M Interaction Strength of Rectangular CFT Short Columns (콘크리트충전 각형강관단주의 P-M 조합강도 예측을 위한 콘크리트 구성방정식)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2015
  • The plastic stress distribution method and the strain compatibility method are the two representative methods to calculate the P-M interaction strength of RCFT (rectangular concrete filled tube) columns. The plastic stress distribution method is approximate while the stress compatibility method should approach the exact solution if accurate constitutive relations of the materials involved are used. Recent study by the authors pointed out that, because of lack of accurate constitutive model for the concrete confined by the rectangular steel tube, no strain compatibility method according to the current structural provisions provides a satisfactory prediction of the P-M interaction strength of RCFT columns under various material combinations. An empirical constitutive model which can capture the stress-strain characteristics of the confined concrete of RCFT columns is proposed based on analyzing extensive exisitng test database. The key idea was to define the concrete crushing strain as a function of steel-to-concrete strength ratio and width-to-thickness ratio of steel tube. It was shown that the proposed model leads to more accurate and more consistent prediction of the P-M interaction strength of RCFT columns under general design conditions.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.