• Title/Summary/Keyword: 셸

Search Result 177, Processing Time 0.025 seconds

Vibration and Stability of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동 및 안정성해석)

  • Park, Sang-Yun;Kang, Sunghwan;Seo, Jung Seok;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.797-805
    • /
    • 2013
  • In this paper vibration and stability analysis of laminated composite shells based on the first order shear deformation theory(FSDT) for two different boundary conditions(clamped-clamped, simply supported) are performed. Structural model of cross-ply symmetric laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations)and thermal equations which are involved in constitutive equations. Extended Galerkin method is adopted to obtain the discretized equations of motion. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, laminate thickness-ratio and radius ratio for two boundary conditions are investigated and pertinent conclusions are derived.

Identification of the Structural Damages in a Cylindrical Shell (원통형 셸에 발생한 구조손상의 규명)

  • Kim, Sung-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1586-1596
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

Development of a flat shell element by using the hybrid Trefftz plane element with drilling D.O.F. and the DKMQ element (면내 회전 자유도가 추가된 hybrid Trefftz 평면 요소와 DKMQ 요소를 이용한 4 절점 평면 셸 요소의 개발)

  • 최누리;추연석;이승규;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.855-859
    • /
    • 2004
  • We develop a new four-node flat shell element which is accurate, efficient, and suitable to be used on general purpose. The new element has a hybrid Trefftz element with drilling degrees of freedom as a membrane part. We define the two independent displacement field: the internal displacement field that satisfies governing equations in the domain a priori and the boundary displacement field that is usually used as a conventional finite element method. The hybrid Trefftz variational formulation connects these two displacement fields on the boundary of the domain. To add drilling degrees of freedom, we introduce the Allman's quadratic displacement field to the boundary displacement field. As a result, our flat shell element has 6 degrees of freedom per a node. We also use the well-known DKMQ plate bending element for the plate part of the proposed element. The DKMQ element satisfies Mindlin-Reissner‘s plate theory along the edge of the element and gives proper behavior regardless of the thickness. A series of numerical experiments shows that the performance of the new element such as accuracy, rate of convergence, robustness to mesh quality, and so on.

  • PDF

Vibration Analysis of Partially Fluid-filled Continuous Cylindrical Shells with Intermediate Supports (유체가 부분적으로 채워진 내부지지 연속 원통셸의 진동해석)

  • 김영완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.244-252
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics for the partially fluid-filled continuous cylindrical shells with the intermediate supports. The intermediate supports are simulated by two types of artificial springs : the translational spring for the translation for each direction and the rotational spring for a rotation. The springs are continuously distributed along the circumferential direction. By allowing the spring stiffness to become very high compared to the stiffness of the structure, the rigid intermediate supports are approximated. In the theoretical procedure, the Love's thin shell theory is adopted to formulate the theoretical model. The frequency equation of the continuous cylindrical shell is derived by the Rayleigh-Ritz approach based on the energy method. Comparison and convergence studies are carried out to verify and establish the appropriate number of series term and the artificial spring stiffness to produce results with an acceptable order of accuracy. The effect of intermediate supports, their positions and fluid level on the natural frequencies and mode shapes are studied.

Free Vibration Analysis of Combined Cylindrical Shells with an Annular Plate Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 자유진동해석)

  • Chung Kang;Kim Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.439-446
    • /
    • 2005
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

Study on Application of Spatial Signal Processing Techniques to Wavenumber Analysis of Vibration Data on a Cylindrical Shell (원통셸의 진동 데이터에 대한 파수해석을 위한 공간신호처리 방법의 응용 연구)

  • Kil, Hyun-Gwon;Lee, Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.863-875
    • /
    • 2010
  • The vibration of a cylindrical shell is generated due to elastic waves propagating on the shell. Those elastic waves include propagating waves such as flexural, longitudinal and shear waves. Those also include non-propagating decaying waves, i.e. evanescent waves. In order to separate contributions of each type of waves to the data for the vibration of the cylindrical shell, spatial signal processing techniques for wavenumber analysis are investigated in this paper. Those techniques include Fast Fourier transform(FFT) algorithm, Extended Prony method and Overdetermined Modified Extended Prony method(OMEP). Those techniques have been applied to identify the waves from simulated vibration signals with various signal-to-noise ratios. Futhermore, the experimental data for in-plane vibration of the cylindrical shell has been processed with those techniques to identify propagating waves(longitudinal, shear and flexural waves) and evanescent waves.

A Study on the Ooptimization of the Stiffened Cylindrical Shell (보강원통셀의 최적구조설계에 관한 연구)

  • 이영신;김대원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.205-212
    • /
    • 1989
  • The minimum weight design for the simply supported orthogonally stiffened cylindrical shell subjected to axial compression is studied by a mathematical programming. A smeared-out method is used for the computation of buckling load in the optimization process and optimization is accomplished by a gradient projection method. Maximum eight design variables and twenty-one inequality constraints considering the buckling, stress and geometric restraints are used. The three stringer types are considered as the optimization models : (1) rectangular stringer (2) I-stringer (3) T-stringer. Two design examples are compared with those in the other studies and the results demonstrate the validity of the present study. From the calculation the design with T-stringer can be more efficient than the one with rectangular or I-stringer.

Buckling and Vibration of Laminated Composite Non-Circular Cylindrical Shells (비원형 단면을 가진 적층복합재료원통셸의 좌굴 및 진동해석)

  • 이영신;안상균;이우식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.807-819
    • /
    • 1989
  • Buckling and vibration of laminated non-circular cylindrical shells with constant thickness and simply supported boundary condition is considered. Governing equations are derived based on the Donnell and Flugge shell theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others. Variations of frequency parameter and buckling load parameter on the change of stacking angle, eccentricity parameter and shell theories are investigated. Conclusion of this study is as follows: (1) General solutions of buckling and vibration of laminated non-circular cylindrical shell are obtained. (2) Frequency parameter is decreased as the initial axial load is increased. (3) In general, frequency and buckling load parameter of laminated non-circular cylindrical shells are decreased as increasing of eccentricity parameter and stacking angle.

Waterborne Noise Prediction of the Reinforced Cylindrical Shell Using the SEA Technique (SEA 기법을 이용한 보강 원통형 셸의 수중방사소음 해석)

  • 배수룡;전재진;이헌곤
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.155-161
    • /
    • 1993
  • The vibration generated by the machinery on board is transmitted to the hull and into the water. At the early design stage, the prediction of the hull vibration and the radiated noise level is very important to reduce their levels. In this study, SAE(Statistical Energy Analysis) technique is applied to predict structureborne noise level of the hull considering fluid loading. Rayleigh integral is applied to predict the radiated noise level. The results of comparision between the predictions and measurements for the reinforced cylindrical shell have shown good agreements.

  • PDF