• Title/Summary/Keyword: 세라믹 체적비

Search Result 9, Processing Time 0.022 seconds

A Study on Injection Moldability of a Ceramic Material (세라믹재료의 사출성형성에 대한 연구)

  • 나병철;윤재륜;오박균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-71
    • /
    • 1990
  • The fabrication of ceramic machine components by injection molding(CIM : Ceramic Injection Molding) is critically dependent on the shaping and binder extraction techniques. Injection molding is of keen interest to ceramic industries because CIM is suitable for making an intricate shape and manufacturing cost is lower than other process when production scale is large. The success of the molding process is dependent on the correct formulation of the organic vehicle and the achievement of optimum filler loading. Fine alumina powders and polyethylene binder systems were employed to prepare moldable blend then produce a simple specimen by compression molding. Flow characteristics of the mixture was evaluated by viscosity measurement. Optimum binder system and ceramic volume loading for injection molding were determind. A good debinding technique was utilized to improve the quality of debinded parts and save the debinding time. The simple ceramic part was successfully sintered after debinding and its microstructure examined with SEM revealed good consolidation.

Method for Determining Fiber Volume Fraction in Carbon/Epoxy Composites Considering Oxidation of Carbon Fiber (탄소섬유 산화 현상을 고려한 탄소복합재료의 섬유체적비 측정법)

  • Kim, YunHo;Kumar, Sathish;Choi, Chunghyeon;Kim, Chun-Gon;Kim, Sun-Won;Lim, Jae Hyuk
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.311-315
    • /
    • 2015
  • Measuring fiber volume fraction properly is very important in designing composite materials because the fiber volume fraction mainly determines mechanical and thermal properties. Conventional Ignition methods are effective for ceramic fiber reinforcing composite materials. However, these methods are not proper for applying to carbon fiber reinforcing composites because of the venerable characteristic against oxidation of carbon fiber. In the research, fiber volume fraction of carbon fiber composites was obtained by a thermogravimetric analysis considering oxidation characteristic of the carbon fiber and the method was compared and verified with the results from microscopic cross section images.

Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale ("Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가)

  • Kim, Young-Deog;Kim, Kwang-Il;Jeong, Woo-Cheol;Kim, Heung-Rak;Kim, Dong-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.354-360
    • /
    • 2002
  • The piezoelectric composites had many advantages in comparison with conventional piezoelectric ceramics and piezopolymers for ultrasonic transducers used in NDT and in medical ultrasionic imaging. The electromechanical coupling coefficient should be high and the acoustic impedance should be low in these applications. However, the cross-coupling with spurious oscillations caused by laterally running plate waves exhibited complex motions in the surface of piezoelectric composites with coarse lateral spatial scale. The thickness mode electromechanical coupling coefficient of 1-3type of piezoelectric compoistes were 0.36 to 0.64, and the acoustic impedance of them were 9.8 to 22.7 MRayl. The lateral resonance frequency of 1-3 type piezoelectric composites shifted to high frequency region with decreasing lateral spatial scale.

Preparation of Densified ACFs for Electrodes of Electrical Double Layer Capacitor (전기이중층 캐패시터용 고밀도 활성탄소섬유 전극의 제조)

  • 최영옥;김종휘;양갑승
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.91-94
    • /
    • 2003
  • 탄소재료는 높은 전기전도도 및 기계적 강도, 화학적 안정성, 큰 비표면적(1000~3000 $m^2$/g) 등의 특성 때문에 연료전지, 리튬이온 이차전지, 전기이중층 캐패시터(electric double layer capacitor, EDLC)의 전극활물질로 주목받고 있다[1]. 일반적으로 활성탄소섬유는 1000~3000 $m^2$/g의 비표면적을 갖기 때문에 종래의 필름 콘덴서와 세라믹 콘덴서에 비해 비약적인 고용량(체적당 수천 배, Farad급)을 얻을 수 있다. 전기이중층 캐패시터는 수명이 반영구적이며 사용온도의 범위가 넓고 안전하다는 장점을 지니고 있으며 이러한 캐패시터의 성능은 전극으로 사용되는 활성탄소 섬유의 비표면적, 세공의 크기, 구조 및 형태, 표면의 관능기 및 전기 전도도 등의 특성에 크게 좌우된다[1-3]. (중략)

  • PDF

Microstructure Control of Tungsten Film for Bragg Reflectors of Thin Film Bulk Acoustic Wave Resonators (체적탄성파 공진기 브라그 반사층 적용을 위한 텅스텐 박막의 미세구조 조절에 대한 연구)

  • 강성철;이시형;박종완;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.268-272
    • /
    • 2003
  • The microstructures of tungsten films were controlled by changing the sputtering pressure and substrate temperatures during D.C. sputter deposition. As the sputtering pressures were decreased, the sputtered models of the tungsten films were changed from the zone I model to zone T model. The tungsten film having zone T model microstructure shows a resistivity of 10${\times}$10$\^$-6/ $\Omega$-cm and (110) preferred orientation. FBAR with Bragg reflector composed of $SiO_2$and tungsten films having zone T model microstructure shows quality factor, Q$\_$s/, of 494 and K$\_$eff/$\^$2/ of 5.5% due to the high acoustic impedance and the smooth surface.

The Effects of Insulating Materials on the Magnetic Properties of Nanocrystalline FeCuNbSiB Alloy Powder Cores (FeCuNbSiB 나노결정립 합금 분말코아의 자기적 특성에 미치는 절연체의 영향)

  • Noh, T.H.;Choi, H.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.186-191
    • /
    • 2004
  • The variation of magnetic properties with insulating materials(glass frits, talc and polyamide) in compressed powder cores composed of Fe$\sub$73.5/Cu$_1$Nb$_3$Si$\sub$15.5/B$\sub$7/ nanocrystalline alloy powders(size: 250~850 $\mu\textrm{m}$) and 3 wt% insulators has been investigated. Larger permeability was obtained at the frequency lower than 300~400 kHz for the powder cores including ceramic insulators(glass frits and talc) as compared to the cores with polyamide, while at higher frequency than 1 MHz the permeability of the former cores decreased rapidly. Further the cores with ceramic insulators showed larger core loss and smaller peak quality factor attained at lower frequency. On the contrary, the powder cores with polyamide exhibited high stability of permeabilities up to several MHz and superior core-loss and quality-factor properties. Moreover the dc bias property was better in the wide field range for the cores having polyamide. The enhanced magnetic properties of polyamide-added cores were attributed to the more sufficient electrical insulation between magnetic particles, where the higher insulation state was considered to be obtained from the larger volume fraction of polyamide in the powder cores.

Review on additive manufacturing of dental materials (치과용 재료의 적층가공에 대한 문헌고찰)

  • Won, Sun;Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

Characteristics of The 1-3 Piezoelectric Composite Transducer Manufactured by Dicing-Filling Method (Dicing-Filling 방법으로 제작된 1-3 압전복합변환자의 특성)

  • Kim, W.S.;Yun, U.H.;Ok, C.I.;Kim, S.B.;Lee, J.K.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • The 1-3 piezoelectric composite transducer with 75 volume percents PZT was fabricated by the dicing-filling method. The resonance modes of the 1-3 transducer have been studied with electric impedance measurement as a function of frequency. The fundamental frequencies of the planar and thickness mode were observed at 0.95MHz and 1.63MHz respectively, but the lateral mode was not observed. In the thickness mode, the electromechanical coupling coefficient of the 1-3 piezoelectric composite transducer, 0.54, was very closed to that of the single phase PZT(0.52). The pulse-echo response by exciting the 1-3 transducer with an electric pulse was observed from the water/reflector interface, and analyzed bandwidth by the spectrum of the impulse response. The quality factor Q for the 1-3 transducer was observed as 1.5 smaller than that of the single phase(80) and then the 1-3 transducer may be used to the broad band type transducer applications.

  • PDF

Effect of Fiber Dispersion on Mechanical Strength of SiCf/SiC Composites (강화 섬유의 분산도가 SiCf/SiC 복합소재의 기계적 강도에 미치는 영향)

  • Ji Beom Choi;Soo-Hyun Kim;Seulhee Lee;In-Sub Han;Hyung-Joon Bang;Seyoung Kim;Young-Hoon Seong
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.180-185
    • /
    • 2023
  • This paper investigates the impact of fiber dispersion on the internal structure and mechanical strength of SiCf/SiC composites manufactured using spread SiC fibers. The fiber volume ratio of the specimen to which spread SiC fiber was applied decreased by 9%p compared to the non-spread specimen, and the resin slurry impregnated between the fibers more smoothly, resulting in minimal matrix porosity. In order to compare the fiber dispersion of each specimen, a method was proposed to quantify and evaluate the separation distance between fibers in composite materials. The results showed that the distance between fibers in the spread specimen increased by 2.23 ㎛ compared to the non-spread specimen, with a significant 42.6% increase in the distance between fiber surfaces. Furthermore, the 3pt bending test demonstrated a 49.3% higher flexural strength in the spread specimen, accompanied by a more uniform deviation in test data. These findings highlight the significant influence of SiC fiber dispersion on achieving uniform densification of the SiCf/SiC matrix and increasing mechanical strength.