• Title/Summary/Keyword: 세공

Search Result 449, Processing Time 0.029 seconds

Characterization of Charcoals prepared by Korean Traditional Kiln (우리나라 전통 숯가마로부터 생산된 숯의 특성분석)

  • An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.208-216
    • /
    • 2022
  • Surface morphology and adsorption characteristics of black and white charcoals prepared from Korean traditional kiln were quantitatively analyzed. TGA and elemental analysis of charcoals were different from produced kiln, and thermal degradation temperature and carbon content of white charcoals were apparently higher than those of black charcoals. Surface morphology shows the activation progressed through the longitudinal direction of woods and new micropores were developed to radial direction on the surface of macropores as the furthermore activation resulting in the pore connection. BET adsorption isotherms show that there are low-pressure hysteresis due to the no desorption of adsorbates, which resulted in unique Type of charcoals overlapping Type I and Type IV. Such a low-pressure hysteresis is occurred from expansion of adsorbates, which were embedded in the micropore entrances and did not get out during the desorption run. The characteristics of charcoals such as specific surface area and pore size distribution did not show correct values depending on not only produced company but also sampling sites of one piece of charcoal. Therefore, it is not easy to suggest the quantitative characteristics of charcoals prepared from Korean traditional kiln. On the other hand, preparation the quality standard of charcoal is necessary for their special uses such as adsorbent.

A Study on Plot Lamination methodology for the planning and analysis of storytelling (스토리텔링 기획·분석을 위한 '플롯적층' 방법론 연구)

  • Ahn, Soong-Beum
    • Journal of Popular Narrative
    • /
    • v.26 no.3
    • /
    • pp.255-288
    • /
    • 2020
  • The purpose of this study is to propose 'plot lamination methodology' for planning and analyzing of storytelling. The story contents with a certain volume of narrative might have several important characters. Most of the characters have meaningful influences on the context of the story through their choices and actions as they go through dynamic changes to construct and deconstruct relationships. The plot lamination methodology is the result of an attempt to look at the process from the 'strategic' point of view by focusing on the fact that the main characters with supplementary nature contribute to the independent formation of subplot based on the main plot driven by the protagonist. Regardless of how they live their own unique and autonomous life in the narrative, the main characters hold a relatively subordinate position within the centripetal force of the main plot. Their journeys tend to expand/emphasize/divide up the process of the main plot's 'persuasion via causality,' and also individualize into the functions of emotional sympathy (pathos), moral, ethical perspective (ethos), and rational logic (logos). As such, the subplots of main characters are laminated according to these three functional traits, which could become multi-layered through second or third laminations, depending on the number and roles of other characters. If the plot lamination methodology is further developed through follow-up studies, it will open up the possibilities of the strategic design (planning) and aesthetic criticism (analysis) regarding the procedure of conjugation /branching of subplot and/from the main plot.

A Study on Moisture Adsorption Capacity by Charcoals (숯의 수분 흡착성능 연구)

  • Kim, Dae Wan;An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon;Lee, Young Seak
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.377-385
    • /
    • 2022
  • Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.

Low Temperature CO Oxidation over Cu-Mn Mixed Oxides (Cu-Mn 혼합산화물 상에서 일산화탄소의 저온산화반응)

  • Cho, Kyong-Ho;Park, Jung-Hyun;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • The Cu-Mn mixed oxide catalysts with different molar ratios of Cu/(Cu+Mn) prepared by co-precipitation method have been investigated in CO oxidation at $30^{\circ}C$. The catalysts used in this study were characterized by X-ray Diffraction (XRD), $N_2$ sorption, X-ray photoelectron spectroscopy (XPS), and $H_2$-temperature programmed reduction $(H_2-TPR)$ to correlate with catalytic activities in CO oxidation. The $N_2$ adsorption-desorption isotherms of Cu-Mn mixed oxide catalysts showed a type 4 having pore range of 7-20 nm and BET surface area was increased from 17 to $205\;m^2{\cdot}g^{-1}$ with increasing of Mn content. The XPS analysis showed the surface oxidation state of Cu and Mn represented $Cu^{2+}$and the mixture of $Mn^{3+}$ and $Mn^{4+}$, respectively. Among the catalysts studied here, Cu/(Cu+Mn) = 0.5 catalyst showed the highest activity at $30^{\circ}C$ in CO oxidation and the catalytic activity showed a typical volcano-shape curve with respect to Cu/(Cu+Mn) molar ratios. The water vapor showed a prohibiting effect on the efficiency of the catalyst which is due to the competitive adsorption of carbon monoxide on the active sites of catalyst surface and finally the formation of hydroxyl group with active metals.

Manufacturing of Lime Materials with High Specific Surface Area for Desulfurization (고비표면적 탈황용 석회소재 제조)

  • Seok-je Kwon;Young-jin Kim;Yang-soo Kim;Jun-hyung Seo;Jin-sang Cho
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2024
  • In an effort to achieve the goal of carbon neutrality, countries around the world are aiming to phase out coal-fired power plants. Due to various reasons, electricity production through coal-fired power generation and sulfur oxide (SOx) emissions are expected to continue in the future. In the South Korea, sodium bicarbonate (NaHCO3) and lime materials are used to treat SOx, and most of the sodium bicarbonate is imported. Therefore, this research was conducted to replace sodium bicarbonate by improving the physical properties of lime materials using domestic limestone. Limestone was heat-treated through a box-type electric furnace and a vertical electric furnace. Due to the structural characteristics of the vertical electric furnace, a lime material(quicklime) was possible to improve the physical properties like a specific surface area and a pore volume. Then, they were reached to 22.33 m2/g specific area and 0.14 cc/g pore volume.

Monovalent Ion Selective Anion-Exchange Membranes for Reverse Electrodialysis Application (역전기투석 응용을 위한 1가 이온 선택성 음이온교환막)

  • Ji-Hyeon Lee;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • Reverse electrodialysis (RED) is an electro-membrane process employing ion-exchange membranes (IEMs) that can harvest electric energy from the concentration difference between seawater and river water. Multivalent ions contained in seawater and river water bind strongly to the fixed charge groups of the IEM, causing high resistance and reducing open-circuit voltage and power density through uphill transport. In this study, a pore-filled anion-exchange membrane (PFAEM) with excellent monovalent ion selectivity and electrochemical properties was fabricated and characterized for RED application. The monovalent ion selectivity of the prepared membrane was 3.65, which was superior to a commercial membrane (ASE, Astom Corp.) with a selectivity of 1.27 under the same conditions. Additionally, the prepared membrane showed excellent electrochemical properties, including low electrical resistance compared to ASE. As a result of evaluating RED performance under seawater of 0.459 M NaCl/0.0510 M Na2SO4 and river water of 0.0153 M NaCl/0.0017 M Na2SO4, the maximum power density of 1.80 W/m2 was obtained by applying the prepared membrane, which is a 40.6% improved output performance compared to the ASE membrane.

Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption (LSX 제올라이트의 합성 및 질소 흡착 특성)

  • Hong, Seung Tae;Lee, Jung-Woon;Hong, Hyung Phyo;Yoo, Seung-Joon;Lim, Jong Sung;Yoo, Ki-Pung;Park, Hyung Sang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The $Na_2O/(Na_2O+K_2O)$ ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the $Na_2O/(Na_2O+K_2O)$ ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. $Li^+$ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. $Li^+$ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the $Ca^{2+}$ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.

HISTOLOGIC FEATURE AND INFILTRATION OF ADHESIVE RESIN ACCORDING TO PRETREATMENT ON PROXIMAL EARLY CARIES LESION (평활면 초기 우식병소의 표면처리에 따른 조직상 및 접착제의 침투 양상 비교)

  • Kim, In-Young;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Early enamel caries is commonly remineralized by the patient‘s improved oral hygiene or fluoridation, however the result is clinically unreliable. As an alternative, we tried to seal the lesions with low-viscosity light-curing resin. The aim of the present study was to search the proper methods of the adequate pretreatment prior to applying adhesive resin on natural proximal caries lesions. Thirty nine extracted deciduous molar teeth showing proximal early caries lesion were used for this study. They were divided into 5 groups : Group 1; only carefully cleaned with water, group 2; etched with 15% HCl for 15s, group 3; etched with 35% phosphoric acid for 15s, group 4; etched with 35% phosphoric acid for 30s, and group 5; cleaned with 0.5% NaOCl. Following results were obtained by evaluating with SEM and CLSM after applied with adhesive resin. 1. As a result of SEM evaluation, group 2 showed clearly removed surface layer, group 3,4 showed partially removed surface layer irregularly, group 5 showed slightly removed surface layer. 2. Group 2 showed the deepest infiltration depth, followed by group 4, group 3, group 5, group 1 and besides group 5, other groups showed significantly deep infiltration depth. (p < 0.01) In conclusion, the best methods of the adequate pretreatment on natural proximal caries lesion for deep infiltration of adhesive resin was to etch with 15% HCl for 15s.

  • PDF

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.

A Study on Laboratory Treatment of Metalworking Wastewater Using Ultrafiltration Membrane System and Its Field Application (한외여과막시스템을 이용한 금속가공폐수의 실험실적 처리 및 현장 적용 연구)

  • Bae, Jae Heum;Hwang, In-Gook;Jeon, Sung Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.487-494
    • /
    • 2005
  • Nowadays a large amount of wastewater containing metal working fluids and cleaning agents is generated during the cleaning process of parts working in various industries of automobile, machine and metal, and electronics etc. In this study, aqueous or semi-aqueous cleaning wastewater contaminated with soluble or nonsoluble oils was treated using ultrafiltration system. And the membrane permeability flux and performance of oil-water separation (or COD removal efficiency) of the ultrafiltration system employing PAN as its membrane material were measured at various operating conditions with change of membrane pore sizes and soil concentrations of wastewater and examined their suitability for wastewater treatment contaminated with soluble or insoluble oil. As a result, in case of wastewater contaminated with soluble oil and aqueous or semi-aqueous cleaning agent, the membrane permeability increased rapidly even though COD removal efficiency was almost constant as 90 or 95% as the membrane pore size increased from 10 kDa to 100 kDa. However, in case of the wastewater contaminated with nonsoluble oil and aqueous or semi-aqueous cleaning agent, as the membrane pore size increased from 10 kDa to 100 kDa and the soil concentration of wastewater increased, the membrane permeability was reduced rapidly while COD removal efficiency was almost constant. These phenomena explain that since the membrane material is hydrophilic PAN material, it blocks nonsoluble oil and reduces membrane permeability. Thus, it can be concluded that the aqueous or semi-aqueous cleaning solution contaminated with soluble oil can be treated by ultrafiltration system with the membrane of PAN material and its pore size of 100 kDa. Based on these basic experimental results, a pilot plant facility of ultrafiltration system with PAN material and 100 kDa pore size was designed, installed and operated in order to treat and recycle alkaline cleaning solution contaminated with deep drawing oil. As a result of its field application, the ultrafiltration system was able to separate aqueous cleaning solution and soluble oil effectively, and recycle them. Further more, it can increase life span of aqueous cleaning solution 12 times compared with the previous process.