• Title/Summary/Keyword: 세공

Search Result 449, Processing Time 0.032 seconds

Adsorption Characteristics of Toluene Vapor According to Pore Structures of Zeolite 5A Modified with Hydrochloric Acid (산으로 개질한 Zeolite 5A의 세공구조에 따른 Toluene Vapor의 흡착특성)

  • Lee, Song-Woo;Bae, Sang-Kyu;Kwon, Jun-Ho;Na, Young-Soo;An, Chang-Doeuk;Yoon, Young-Sam;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.807-812
    • /
    • 2005
  • This study is to investigate the correlation of pore structures of Zeolite 5As modified with acid and their adsorption capacity of toluene vapor using the dynamic adsorption method. The experimental results showed that the modification with acid allowed more micropores and enlarged the existing pores. Toluene vapor was mainly adsorbed on the surface of pores over $15\;{\AA}$ in diameter. The equilibrium adsorption capacity of toluene vapor of the modified Zeolite 5As was in the range of $15{\sim}70\;mg/g$ and the equilibrium adsorption capacity was increased to f times than that of the Zeolite 5A. The correlation between the total cumulative surface area and the equilibrium adsorption capacity was hard to say linear. The correlation in diameter between the cumulative surface area in the range of over $15\;{\AA}$ and the equilibrium adsorption capacity gate the highest correlation factor of 0.997.

Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation (폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구)

  • MinHee Won;WooRi Cho;Jin Man Chang;Jai-young Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 2023
  • There is a lot of interest in methods for pollutants using adsorption, and recent research is being conducted to show that biochar can be used to remove organic and inorganic pollutants. In particular, wood waste as waste biomass requires a biomass recycling method, and a method to increase the adsorption capacity of biochar produced using wood waste is needed. Biochar is created by Hydrothermal carbonization (HTC) using, which uses low temperature and high pressure, has low energy consumption and does not require moisture removal pretreatment, and biochar is created through chemical activation using KOH, NaOH, and ZnCl2 chemicals. The adsorption characteristics of biochar were determined by analyzing iodine adsorptivity, specific surface area, pore diameter, pore volume, pore distribution, and SEM according to the activation. The results of analyzing the selecting biochar by activating the biochar produced at HTC 300℃, 4 hr by KOH, NaOH, and ZnCl2 chemicals, the specific surface area was 774~1.387 m2/g, showing a high specific surface area similar to activated carbon, and it was confirmed that micropores with an average pore diameter in the range of 21~24 Å were formed. As a result of SEM observation, the surface was uniform with a certain shape depending on activation. It was confirmed that one pore was developed and the number of pores increased.

Periodic Mesoporous Organosilicas (유/무기 하이브리드형 실리카 나노세공체)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.113-122
    • /
    • 2020
  • Mesoporous materials are a sort of promising materials with a wide spectrum of applications due to their unique well-defined porous structures that provide high surface area and controllable pore size. Among mesoporous materials, periodic mesoporous organosilicas (PMOs) are highly emerging materials in sense of applications due to their large pore sizes and organic functionality in the frame. The organic functional groups in the frameworks of these solids allow tuning of the surface properties and modification of the bulk properties of the material. This article provides a comprehensive overview of PMOs and discusses their different functionalities, morphology and applications, such as catalysis, environmental applications, and adsorption, for which PMOs have been used after their discovery. The review article will provide fundamental understanding of PMOs and their advanced applications to readers.

Industrial Utilization and Outlook on Nanoporous Materials (나노세공체 촉매소재의 산업적 활용과 전망)

  • Chang, Jong-San;Hwang, Young Kyu;Park, Yong-Ki;Choi, Won Choon
    • Prospectives of Industrial Chemistry
    • /
    • v.17 no.2
    • /
    • pp.8-20
    • /
    • 2014
  • 나노세공체는 고표면적, 균일한 다공성, 분자크기의 세공구조, 높은 흡착용량, 이온교환 특성, 높은 촉매활성, 분자크기의 형상선택성 등의 특징을 갖기 때문에 촉매 및 흡착제로 나노소재 분야에서 가장 오랫동안 활용되어 왔던 중요한 물질 가운데 하나로 정유 및 석유화학 산업을 비롯한 화학산업과 환경 산업에 광범위하게 사용되고 있다. 본 고찰에서는 결정성 나노세공체 가운데 가장 중요한 제올라이트와 최근 연구가 활발한 하이브리드 나노세공체의 산업적 응용 및 기술개발 동향과 향후 발전 전망에 대해 간략히 기술하였다.

Removal of Free Fatty Acid in used oil on Zeolite Catalysts (제올라이트 종류에 따른 유리지방산 제거 특성)

  • Chang, Duk-Rye;Oh, Sung-Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.263-265
    • /
    • 2008
  • 자원 재활용 및 에너지 생산관점에서 폐유지로부터 환경친화적인 연료인 바이오디젤에 대한 연구가 활발히 진행되고 있다. 특히 폐유지내 함유된 유리지방산 및 수분에 의해 효율적인 에스테르화 반응이 어렵기 때문에 이를 전처리 단계에서 제거되어야 한다. 본 연구에서는 폐유지내 유리지방산을 효과적으로 제거하기 위하여 회분식 반응기에서 제올라이트 촉매의 종류에 의한 세공구조와 산성도 변화에 따른 유리지방산 전환반응에 미치는 영향을 조사해 보았다. 제올라이트 촉매의 유리지방산 전환율은 세공구조와 산성도에 따라 큰 차이를 나타내었다. 유리지방산 전환율은 FAU < MOR < MFI < BEA의 순으로 높았다. 제올라이트의 세공구조는 1차원적인 구조를 가질 경우 탄소침적이 일어나지만 3차원적인 세공구조를 가지는 경우 탄소침적에 의한 촉매의 활성저하가 감소된다. 또한 제올라이트의 산성도에 따른 특성으로는 유리지방산의 전환반응에는 중간정도의 산세기를 가진 촉매가 유리함을 확인하였다. 그러므로 폐유지로부터 유리지방산을 제거하기 위한 우수한 제올라이트 촉매로는 BEA 제올라이트 촉매임을 확인하였다.

  • PDF

흡착제의 세공크기분포에 따른VOCs의 흡${\cdot}$탈착특성

  • Kwon, Jun-Ho;Gu, Kyung-Ran;Gang, Jung-Hwa;Lee, Song-Woo;Na, Young-Su;An, Chang-Duk;Yoon, Young-Sam;Song, Seung-Gu
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.11a
    • /
    • pp.94-96
    • /
    • 2005
  • Acetone vapor흡착에서는 활성탄의 BJH 비표면적과 탈착량을 비교했을때 10${\AA}$이하에서는 다층흡착이 일어나며 그 이상의 세공크기에서는 단층 흡착이 일어나는 것으로 판단된다. 동일한 특성을 가진 MEK vapor흡착에서도 활성탄의 BJH 비표면적과 탈착량을 비교했을때 15 ${\AA}$이하에서는 다층흡착이 일어나며 그이상의 세공크기에서는 단층 흡착이 일어나는 것으로 판단된다. 위 실험을 통해 흡착질의 크기와 흡착제의 세공크기 분포에 Knudsen diffusion의 영역을 고려하여 흡착제를 사용하는 것이 좋은 것으로 판단된다.

  • PDF

Asymmetric Catalytic Activity of Mesoporous Mordenite containing Polymeric Chiral Salen Complexes in the Mesopore System (폴리머 키랄 살렌을 함유한 메조세공 모더나이트의 비대칭 촉매 활성)

  • Guo, Xiao-Feng;Kim, Yong-Suk;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • The formation of mesoporous pores in the microporous mordenite crystals was performed by controlled silica extraction on alkaline treatment. Inner tunable mesopore size could be controlled by changing the concentration of alkaline solution. The pore structure of mordenite zeolite was studied by instrumental analysis after alkaline-treatment. To obtain the cage type mesopores, Ti-coating on the ourside mordenite crystals before alkaline treatment was investigated to be the most effective. Polymeric chiral salen Co (III) complexes were successfully encapsulated in mesoporous mordenite zeolite by "ship-in-a-bottle" method. The heterogeneous catalyst could be applied in asymmetric ring opening of epichlorohydrine by water. It showed very excellent enantioselectivity with a high yield in the catalysis.

Correlations Between Pore Structure of Activated Carbon and Adsorption Characteristics of Acetone Vapor (활성탄의 세공구조와 Acetone Vapor 흡착특성의 상관관계)

  • Lee, Song-Woo;Bae, Sang-Kyu;Kwon, Jun-Ho;Na, Young-Soo;An, Chang-Doeuk;Yoon, Young-Sam;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.620-625
    • /
    • 2005
  • This study is to investigate the correlation between pore structures of activated carbons and adsorption characteristics of acetone vapor using the dynamic adsorption method. The experimental results showed that the breakthrough time of ACT activated carbon made by Takeda was the longest, because ACT has more micropores below pore diametr $10{\AA}$ than the compared activated carbons. The equilibrium adsorption capacity had direct correlation to the breakthrough time. The relation between BET specific surface area and the equilibrium adsorption capacity was hard to say linear. Therefore, it was difficult to estimate the adsorption ability of activated carbons only by BET specific surface area. The correlation factor between the cumulative surface area and the equilibrium adsorption capacity decreased with enlarging the range of pore size, and there was the highest correlation factor in the range of below $10{\AA}$.

Adsorption and Storage of Natural Gas by Nanoporous Adsorbents (나노세공체 흡착제에 의한 천연가스의 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.117-125
    • /
    • 2009
  • In order to utilize natural gas (NG), one of the clean energy sources in next-generation, as a fuel for vehicles, it is important to store natural gas with high density. To store NG by adsorption (ANG) at room temperature and at relatively low pressure(35~40 atm) is safe and economical compared with compressed NG and liquefied NG. However, so far no adsorbent is reported to have adsorption capacity suitable for commercial applications. Nanoporous materials including metal-organic frameworks can be potential adsorbents for ANG. In this review, physicochemical properties of adsorbents necessary for high adsorption capacity are summarized. Wide surface area, large micropore volume, suitable pore size and high density are necessary for high energy density. Moreover, low adsorption-desorption energy, rapid adsorption-desorption kinetics and high delivery are needed. Recently, various efforts have been reported to utilize nanoporous materials in ANG, and it is expected to develop a nanoporous material suitable for ANG.

Preparation of Inorganic Ultrafiltration Membrane by Anodic Oxidation in Oxalic Acid (수산전해액하에서 양극산화에 의한 무기 UF막의 제조)

  • Lee, Chang-Woo;Hong, Young-Ho;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-541
    • /
    • 1998
  • The porous size alumina membrane was prepared by anodic oxidation with current method in an aqueous solution of oxalic acid. The aluminum metal plate was pretreated with thermal oxidation, chemical polishing and electropolishing before anodic oxidation. Membrane thickness and pore size distribution were investigated with several anodizing conditions; reaction temperature, cumulative charge, electrolyte concentration and current density. The porous alumina membrane obtained was $55{\sim}75{\mu}m$ thick with straight micropore of 45~100nm. Also, the porous alumina membrane has an uniform pore diameter and pore distribution. It was inorganic ultrafiltration membrane as a kind of the ceramic membrane.

  • PDF