Browse > Article
http://dx.doi.org/10.17702/jai.2020.21.3.113

Periodic Mesoporous Organosilicas  

Park, Sung Soo (Department of Polymer Science and Engineering, Pusan National University)
Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
Publication Information
Journal of Adhesion and Interface / v.21, no.3, 2020 , pp. 113-122 More about this Journal
Abstract
Mesoporous materials are a sort of promising materials with a wide spectrum of applications due to their unique well-defined porous structures that provide high surface area and controllable pore size. Among mesoporous materials, periodic mesoporous organosilicas (PMOs) are highly emerging materials in sense of applications due to their large pore sizes and organic functionality in the frame. The organic functional groups in the frameworks of these solids allow tuning of the surface properties and modification of the bulk properties of the material. This article provides a comprehensive overview of PMOs and discusses their different functionalities, morphology and applications, such as catalysis, environmental applications, and adsorption, for which PMOs have been used after their discovery. The review article will provide fundamental understanding of PMOs and their advanced applications to readers.
Keywords
Periodic mesoporous organosilicas (PMOs); Functionality; Morphology; Application;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Chu, A. R. Sung, S.S. Park, and C.S. Ha, J. Adh. Interf., 13 (4), 151 (2012).
2 F. Gao, Q. Y. Lu, and D. Y. Zhao, Adv. Mater., 15, 739 (2003).   DOI
3 X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng, F Zhang, Y. Zhang, N. Guan, D. Zhao, and G. D. Stucky, J. Am. Chem. Soc., 133, 14542 (2011).   DOI
4 B. T. Yonemoto, G. S. Hutchings, and F. Jiao, J. Am. Chem. Soc., 136, 8895 (2014).   DOI
5 Y. Wan, H. Yang, and D. Zhao, Acc. Chem. Res., 39 (7), 423 (2006).   DOI
6 D. Gu and F. Schuth, Chem. Soc. Rev., 43, 313 (2014).   DOI
7 T. Asefa, M. J. MacLachlan, and N. Coombs, G. A. Ozin, Nature, 402, 867 (1999).   DOI
8 S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc. 121, 9611 (1999).   DOI
9 B. J. Melde, B. T. Holland, C. F. Blanford, and A. Stein, Chem. Mater., 11, 33023308 (1999).
10 B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G. A. Ozin, Acc. Chem. Res., 38, 305 (2005).   DOI
11 S. S. Park, M. S. Moorthy, and C.-S. Ha, NPG Asia Mater., 6, e96 (2014).   DOI
12 C.-S. Ha and S. S. Park, Periodic Mesoporous Organosilicas: Preparation, Properties and Applications," Springer, Singapore (2019).
13 S. S. Park and C.-S. Ha, Chem. Rec., 6, 32 (2006).   DOI
14 S. S. Park and C.-S. Ha, J. Adh. Interf., 18(2), 75 (2017).
15 Y. Wan and D. Zhao, Chem. Rev., 107 (7), 2821 (2007).   DOI
16 Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, and G. D. Stucky, Nature, 368, 317 (1994).   DOI
17 S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, and T. Tatsumi, Nat. Mater., 2, 801 (2003).   DOI
18 M. P. Kapoor, Q. Yang, and S. J. Inagaki, Am. Chem. Soc., 124, 15176 (2002).   DOI
19 C. Yoshina-Ishii, T. Azefa, N. Coombs, M. J. MacLachlan, and G. A. Ozin, Chem. Commun., 2539 (1999).
20 S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, An. Nature, 416, 304 (2002).   DOI
21 A. Sayari and W. J. Wang, Am. Chem. Soc., 127, 12194 (2005).   DOI
22 M. Cornelius, F. Hoffmann, and M. Froba, Chem. Mater., 17, 6674 (2005).   DOI
23 H. Takeda, Y. Goto, Y. Maegawa, T. Ohsuna, T. Tani, K. Matsumoto, T. Shimada, and S. Inagaki, Chem. Commun., 6032 (2009).
24 X. Du, X. Li, L. Xiong, X. Zhang, F. Kleitz, and S. Z. Qiao, Biomaterials, 91, 90 (2016).   DOI
25 F. Zhu, D. Yang, F. Zhang, and H. Li, J. Mol. Catal. A: Chem., 363-364, 387 (2012).   DOI
26 B. Karimi, H. M. Mirzaei, and A. Mobaraki, Catal. Sci. Technol., 828 (2012).
27 C. Bispo, P. Ferreira, A. Trouve, I. Batonneau-Gener, F. Liu, F. Jerome, and N. Bion, Catal. Today, 218-219, 85 (2013).   DOI
28 R. A. Garcia-Munoz, V. Morales, M. Linares, an B. Rico-Oller, Langmuir, 30, 881 (2014).   DOI
29 A. Corma, D. Das, H. Garcia, and A. Leyva, J. Catal., 229, 322 (2005).   DOI
30 P. Wang, X. Liu, J. Yang, Y. Yang, L. Zhang, Q. Yang, and C. Li, J. Mater. Chem., 19, 8009 (2009).   DOI
31 M. Yoshida, K. Saito, H. Matsukawa, S. Yanagida, M. Ebina, Y. Maegawa, S. Inagaki, A. Kobayashi, and M. Kato, J. Photochem. Photobiol. A: Chem., 358, 334 (2018).   DOI
32 S. H. Lee, S. S. Park, S. Parambadath, and C.-S. Ha, Micropor. Mesopor. Mater., , 226, 179 (2016).   DOI
33 J. Huang, F. Zhang, and H. Li, App. Catal. A: General, 431-432, 95 (2012).   DOI
34 Z. Zhou and M. Hartmann, Chem. Soc. Rev., 42, 3894 (2013).   DOI
35 W. Guo, J. Wang, S.-J. Lee, F. Dong, S. S. Park, and C.-S. Ha, Chem.-Eur. J., 16, 8641 (2010).   DOI
36 S. J. M. C. Burleigh, M. Zeinali, M. S. Spector, J. B. Miller, W. Yan, S. Dai, and M. A. Markowitz, J. Phys. Chem. B, 109, 9198 (2005).   DOI
37 C. P. Moura, C. B. Vidal, A. L. Barros, L. S. Costa, L. C. G. Vasconcellos, F. S. Dias, and R. R. Nascimento, J. Coll. Interf. Sci., 363, 626 (2011).   DOI
38 S. O. Ganiyu, C. Bispo, N. Bion, P. Ferreira, and I. Batonneau-Gener, Micropor. Mesopor. Mater., 200, 117 (2014).   DOI
39 J. H. Shin, S. S. Park, and C.-S. Ha, Coll. Surf. B: Biointerf., 84, 579 (2011).   DOI
40 M. Park, S. S. Park, M. Selvaraj, D. Zhao, and C.-S. Ha, Micropor. Mesopor. Mater., 124, 76 (2009).   DOI
41 M. Park, S. S. Park, M. Selvaraj, I. Kim, and C.-S. Ha, J. Porous Mater., 18, 217 (2011).   DOI
42 B. Nohair, P. T. H. Thao, V. T. H. Nguyen, P. Q. Tien, D. T. Phuong, L. G. Hy, and S. Kaliaguine, J. Phys. Chem. C, 116, 10904 (2012).   DOI
43 J. H. Shin, S. S. Park, M. Selvaraj, and C.-S. Ha, J. Porous Mater., 19, 29 (2012).   DOI
44 B. J. Johnson, N. E. Anderson, P. T. Charles, A. P. Malanoski, B. J. Malde, M. Nasir, and J. R. Deschamps, Sensors (Basel), 11, 886 (2011).   DOI
45 S. S. Park and C. S. Ha, J. Adh. Interf., 17(4), 141 (2016).