DOI QR코드

DOI QR Code

Periodic Mesoporous Organosilicas

유/무기 하이브리드형 실리카 나노세공체

  • Park, Sung Soo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • Received : 2020.08.26
  • Accepted : 2020.09.17
  • Published : 2020.09.30

Abstract

Mesoporous materials are a sort of promising materials with a wide spectrum of applications due to their unique well-defined porous structures that provide high surface area and controllable pore size. Among mesoporous materials, periodic mesoporous organosilicas (PMOs) are highly emerging materials in sense of applications due to their large pore sizes and organic functionality in the frame. The organic functional groups in the frameworks of these solids allow tuning of the surface properties and modification of the bulk properties of the material. This article provides a comprehensive overview of PMOs and discusses their different functionalities, morphology and applications, such as catalysis, environmental applications, and adsorption, for which PMOs have been used after their discovery. The review article will provide fundamental understanding of PMOs and their advanced applications to readers.

중간 세공체(mesoporous) 물질은 높은 표면적과 조절 가능한 기공 크기를 가진 규칙적인 다공성 구조로 최근 다양한 응용분야를 가진 매력적인 재료로 알려져 있다. 중간 세공체 물질 중 특히 유/무기 하이브리드형 실리카 나노세공체(Periodic Mesoporous Organosilica; PMO)는 세공의 크기가 확대되고 골격에 유기물을 도입함으로써 더욱 다양한 응용분야를 확보할 수 있는 새로운 재료로 큰 주목을 받고 있다. 골격 구조에 유기 그룹을 도입하게 되면 표면 물성과 재료 전체 물성의 제어가 가능하게 된다. 본 총설은 PMO의 합성, 기능성, 모폴로지는 물론이고 촉매나 환경분야 응용 등을 포함한 내용을 개괄적으로 고찰하였으므로, PMO의 주요 기능과 응용성에 대한 이해를 높이는데 기여할 것이다.

Keywords

References

  1. S. Chu, A. R. Sung, S.S. Park, and C.S. Ha, J. Adh. Interf., 13 (4), 151 (2012).
  2. F. Gao, Q. Y. Lu, and D. Y. Zhao, Adv. Mater., 15, 739 (2003). https://doi.org/10.1002/adma.200304758
  3. X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng, F Zhang, Y. Zhang, N. Guan, D. Zhao, and G. D. Stucky, J. Am. Chem. Soc., 133, 14542 (2011). https://doi.org/10.1021/ja2060512
  4. B. T. Yonemoto, G. S. Hutchings, and F. Jiao, J. Am. Chem. Soc., 136, 8895 (2014). https://doi.org/10.1021/ja504407e
  5. Y. Wan, H. Yang, and D. Zhao, Acc. Chem. Res., 39 (7), 423 (2006). https://doi.org/10.1021/ar050091a
  6. D. Gu and F. Schuth, Chem. Soc. Rev., 43, 313 (2014). https://doi.org/10.1039/c3cs60155b
  7. T. Asefa, M. J. MacLachlan, and N. Coombs, G. A. Ozin, Nature, 402, 867 (1999). https://doi.org/10.1038/47229
  8. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc. 121, 9611 (1999). https://doi.org/10.1021/ja9916658
  9. B. J. Melde, B. T. Holland, C. F. Blanford, and A. Stein, Chem. Mater., 11, 33023308 (1999).
  10. B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G. A. Ozin, Acc. Chem. Res., 38, 305 (2005). https://doi.org/10.1021/ar040164a
  11. S. S. Park, M. S. Moorthy, and C.-S. Ha, NPG Asia Mater., 6, e96 (2014). https://doi.org/10.1038/am.2014.13
  12. C.-S. Ha and S. S. Park, Periodic Mesoporous Organosilicas: Preparation, Properties and Applications," Springer, Singapore (2019).
  13. S. S. Park and C.-S. Ha, Chem. Rec., 6, 32 (2006). https://doi.org/10.1002/tcr.20070
  14. S. S. Park and C.-S. Ha, J. Adh. Interf., 18(2), 75 (2017).
  15. Y. Wan and D. Zhao, Chem. Rev., 107 (7), 2821 (2007). https://doi.org/10.1021/cr068020s
  16. Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, and G. D. Stucky, Nature, 368, 317 (1994). https://doi.org/10.1038/368317a0
  17. S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, and T. Tatsumi, Nat. Mater., 2, 801 (2003). https://doi.org/10.1038/nmat1022
  18. C. Yoshina-Ishii, T. Azefa, N. Coombs, M. J. MacLachlan, and G. A. Ozin, Chem. Commun., 2539 (1999).
  19. S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, An. Nature, 416, 304 (2002). https://doi.org/10.1038/416304a
  20. M. P. Kapoor, Q. Yang, and S. J. Inagaki, Am. Chem. Soc., 124, 15176 (2002). https://doi.org/10.1021/ja0290678
  21. A. Sayari and W. J. Wang, Am. Chem. Soc., 127, 12194 (2005). https://doi.org/10.1021/ja054103z
  22. M. Cornelius, F. Hoffmann, and M. Froba, Chem. Mater., 17, 6674 (2005). https://doi.org/10.1021/cm051935n
  23. H. Takeda, Y. Goto, Y. Maegawa, T. Ohsuna, T. Tani, K. Matsumoto, T. Shimada, and S. Inagaki, Chem. Commun., 6032 (2009).
  24. X. Du, X. Li, L. Xiong, X. Zhang, F. Kleitz, and S. Z. Qiao, Biomaterials, 91, 90 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.019
  25. F. Zhu, D. Yang, F. Zhang, and H. Li, J. Mol. Catal. A: Chem., 363-364, 387 (2012). https://doi.org/10.1016/j.molcata.2012.07.015
  26. B. Karimi, H. M. Mirzaei, and A. Mobaraki, Catal. Sci. Technol., 828 (2012).
  27. C. Bispo, P. Ferreira, A. Trouve, I. Batonneau-Gener, F. Liu, F. Jerome, and N. Bion, Catal. Today, 218-219, 85 (2013). https://doi.org/10.1016/j.cattod.2013.06.004
  28. R. A. Garcia-Munoz, V. Morales, M. Linares, an B. Rico-Oller, Langmuir, 30, 881 (2014). https://doi.org/10.1021/la403728a
  29. A. Corma, D. Das, H. Garcia, and A. Leyva, J. Catal., 229, 322 (2005). https://doi.org/10.1016/j.jcat.2004.11.006
  30. P. Wang, X. Liu, J. Yang, Y. Yang, L. Zhang, Q. Yang, and C. Li, J. Mater. Chem., 19, 8009 (2009). https://doi.org/10.1039/b913808k
  31. M. Yoshida, K. Saito, H. Matsukawa, S. Yanagida, M. Ebina, Y. Maegawa, S. Inagaki, A. Kobayashi, and M. Kato, J. Photochem. Photobiol. A: Chem., 358, 334 (2018). https://doi.org/10.1016/j.jphotochem.2017.09.008
  32. J. Huang, F. Zhang, and H. Li, App. Catal. A: General, 431-432, 95 (2012). https://doi.org/10.1016/j.apcata.2012.04.021
  33. Z. Zhou and M. Hartmann, Chem. Soc. Rev., 42, 3894 (2013). https://doi.org/10.1039/c3cs60059a
  34. W. Guo, J. Wang, S.-J. Lee, F. Dong, S. S. Park, and C.-S. Ha, Chem.-Eur. J., 16, 8641 (2010). https://doi.org/10.1002/chem.201000980
  35. S. H. Lee, S. S. Park, S. Parambadath, and C.-S. Ha, Micropor. Mesopor. Mater., , 226, 179 (2016). https://doi.org/10.1016/j.micromeso.2015.10.047
  36. S. J. M. C. Burleigh, M. Zeinali, M. S. Spector, J. B. Miller, W. Yan, S. Dai, and M. A. Markowitz, J. Phys. Chem. B, 109, 9198 (2005). https://doi.org/10.1021/jp051435h
  37. C. P. Moura, C. B. Vidal, A. L. Barros, L. S. Costa, L. C. G. Vasconcellos, F. S. Dias, and R. R. Nascimento, J. Coll. Interf. Sci., 363, 626 (2011). https://doi.org/10.1016/j.jcis.2011.07.054
  38. S. O. Ganiyu, C. Bispo, N. Bion, P. Ferreira, and I. Batonneau-Gener, Micropor. Mesopor. Mater., 200, 117 (2014). https://doi.org/10.1016/j.micromeso.2014.07.047
  39. J. H. Shin, S. S. Park, and C.-S. Ha, Coll. Surf. B: Biointerf., 84, 579 (2011). https://doi.org/10.1016/j.colsurfb.2011.02.022
  40. M. Park, S. S. Park, M. Selvaraj, D. Zhao, and C.-S. Ha, Micropor. Mesopor. Mater., 124, 76 (2009). https://doi.org/10.1016/j.micromeso.2009.04.032
  41. M. Park, S. S. Park, M. Selvaraj, I. Kim, and C.-S. Ha, J. Porous Mater., 18, 217 (2011). https://doi.org/10.1007/s10934-010-9373-5
  42. B. Nohair, P. T. H. Thao, V. T. H. Nguyen, P. Q. Tien, D. T. Phuong, L. G. Hy, and S. Kaliaguine, J. Phys. Chem. C, 116, 10904 (2012). https://doi.org/10.1021/jp2116998
  43. J. H. Shin, S. S. Park, M. Selvaraj, and C.-S. Ha, J. Porous Mater., 19, 29 (2012). https://doi.org/10.1007/s10934-010-9443-8
  44. B. J. Johnson, N. E. Anderson, P. T. Charles, A. P. Malanoski, B. J. Malde, M. Nasir, and J. R. Deschamps, Sensors (Basel), 11, 886 (2011). https://doi.org/10.3390/s110100886
  45. S. S. Park and C. S. Ha, J. Adh. Interf., 17(4), 141 (2016).