• Title/Summary/Keyword: 성충 산란 모형

Search Result 23, Processing Time 0.019 seconds

Effects of Temperature on the Development and Fecundity of Maruca vitrata (Lepidoptera: Crambidae) (콩명나방(Maruca vitrata) (나비목: 포충나방과) 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung;Si-Woo, Lee
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.563-575
    • /
    • 2022
  • Maruca vitrata is one of important pests in leguminous crops, especially red bean. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. vitrata for understanding the biological characteristics of the insect species at eight constant temperatures of 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected and larvae successfully developed to the adult stage from 16℃ to 31℃. The developmental period of egg decreased up to 31℃ and after then increased. The developmental period of larva and pupa, and adult longevity of M. vitrata decreased with increasing temperature. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. vitrata were estimated by linear regression as 12.8℃ and 280.8DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 14.2℃ and 31.9℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. vitrata was 17.7℃. In addition, we constructed the oviposition models of adult, using the investigated adult traits including survival, longevity, oviposition period and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M vitrata and to establish the strategy of integrated pest management in legume crops.

Effects of Temperature on the Development and Reproduction of Matsumuraeses falcana (Lepidoptera: Tortricidae) (어리팥나방(Matsumuraeses falcana)의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo; Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.435-447
    • /
    • 2022
  • The soybean podborer, Matsumuraeses falcana (Lepidoptera: Tortricidae), is one of important pests in soybean crop. In the purpose of forecasting population dynamics of M. falcana, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of Matsumuraeses falcana at seven constant temperatures of 10, 13, 19, 22, 25, 28, and 31℃. Eggs hatched successfully at all temperature subjected. M. falcana developed from egg hatching to adult emergence at the tested temperatures except 10, 13, and 31℃. The developmental period of each life stage and adult longevity of M. falcana decreased as temperature increased. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. falcana were estimated by linear regression as 10.2℃ and 492.04DD, respectively. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. TL and TH from egg hatching to adult emergence using SSI model were 16.7℃ and 29.1℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. falcana was 12.4℃. We constructed the adult oviposition model of M. falcana using adult survivorship and fecundity. Temperature-dependent immature development and adult oviposition models will help constructing the population model of M. falcana and developing the strategies of integrated pest management in soybean fields.

Effects of Temperature on the Development and Reproduction of Matsumuraeses phaseoli (Lepidoptera: Tortricidae) (팥나방(Matsumuraeses phaseoli)의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.461-473
    • /
    • 2022
  • Matsumuraeses phaseoli is one of important pests in soybean crops, especially adzuki beans. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. phaseoli for understanding the biological characteristics of M. phaseoli at ten constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected except 7℃ and 34℃. The developmental period of each life stage and adult longevity of M. phaseoli decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. phaseoli were estimated by linear regression as 9.04℃ and 422.97DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 20.0℃ and 32.3℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. phaseoli was 12.3℃. We constructed the adult oviposition model of M. phaseoli using adult survivorship and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M. falcana and to establish the strategy of integrated pest management in soybean fields.

Effects of Temperature on the Development and Reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae) (콩줄기명나방(Ostrinia scapulalis) (나비목: 포충나방과)의 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.577-590
    • /
    • 2022
  • Ostrinia scapulalis is one of important pests in leguminous crops, especially red bean. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of O. scapulalis at eleven constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 36℃. Eggs and larvae successfully developed next life stage at most temperature subjected except 7, 10 and 13℃. The developmental period of egg, larva and pupa decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of O. scapulalis were estimated by linear regression as 13.5℃ and 384.5DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 19.4℃ and 39.8℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of O. scapulalis was 20.4℃. Adults produced viable eggs at the temperature range between 16℃ and 34℃, and showed a maximum number, ca. 416 offsprings, at 25℃. Adult models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed, using the temperature-dependent adult traits. Temperature-dependent development models and adult oviposition models will be useful components to understand the population dynamics of O. scapulalis and will be expected using a basic data for establishing the strategy of integrated pest management in leguminous crops.

Oviposition Time of Overwintered Females and Migration of Crawlers of Pseudaulacaspis prunicola (Homoptera: Diaspididae) on Cherry Trees in Jeju Island (제주도 벚나무에 발생하는 벚나무깍지벌레 월동성충의 산란시기 및 부화약충 이동시기)

  • Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.44 no.3 s.140
    • /
    • pp.231-235
    • /
    • 2005
  • This study was conducted to obtain the optimal spray time for Pseudaulacaspis prunicota (Maskell) (Homoptera: Diaspididae) in early seaon in Jeju. Oviposition time of overwintered females and activity of hatched nymphs of P. prunicola were monitored, and the phenology data were compared with the outputs estimated by a degree-days model of P. pentagona (Targioni-Tozzetti)). Overwintered females of P. prunicola began to lay eggs from mid to late April, and the eggs started to hatch from early May followed by the active migration of the hatched nymphs during mid May. The phenological events of P. prunicola in early season were likely comparable with those of P. pentagona reported in southern Korea and in central Japan. A degree-day model, which predicts the proportion of >50% hatched egg batches of P. pentagona (y=1[exp(-(-a+bx))]; y, proportion; x, degree-days based on $10.5^{\circ}C$ from 1 January; a=-18.80 and b=0.073), accurately described the migration time of P. prunicola hatched nymphs. Thus, it is considered that the degree-day model can be used for predicting the optimal spray time for P. prunicola in early season.

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

An Empirical Model for the Prediction of the Onset of Upward-Movement of Overwintered Caccopsylla pyricola (Homoptera: Psyllidae) in Pear Orchards (배과원에서 꼬마배나무이 월동성충의 수상 이동시기 예측 모형)

  • Kim, Dong-Soon;Yang, Chang-Yeol;Jeon, Heung-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.228-233
    • /
    • 2007
  • Pear psylla, Caccopsylla pyricola (Homoptera: Psyllidae), is a serious insect pest in pear orchards. C. pyricola overwinters as adults under rough bark scales of pear trees. When the weather warms up in the spring, the overwintered adults become active, climb up to the tree branches, and inhabit on fruit twigs to lay eggs. This study was conducted to develop a forecasting model for the onset of upward-movement of overwintered C. pyricola adults to control them by timely spraying of petroleum oil. The adult population densities were observed under rough barks (B) and on fruit twigs (T) of pear trees. Relative upward-movement rates (R) were calculated as T/(B+T). Low threshold temperatures for the activation of overwintered C. pyricola adults were selected arbitrarily from 5 to $9^{\circ}C$ at a $1^{\circ}C$ interval. Then, the days (D) when daily maximum air temperatures were above each low threshold temperature were counted from 1 February until to the dates with R $\geq$ 0.8. The same methods were applied for the prediction of the first observation of eggs. The variation of coefficients (CV) for the mean Des were lowest with the low threshold temperature of $6^{\circ}C$. At this selected threshold temperature, the upward movement of C. pyricola adults occurred with 12 D and they started laying eggs with 25 D. In the field validation, the model outputs with the $6^{\circ}C$ threshold temperature reasonably well explained the observed data in Suwon and Cheonan in 2002. Practical usages of the model were also discussed.

Temperature-dependent Development of Pseudococcus comstocki(Homoptera: Pseudococcidae) and Its Stage Transition Models (가루깍지벌레(Pseudococcus comstocki Kuwana)의 온도별 발육기간 및 발육단계 전이 모형)

  • 전흥용;김동순;조명래;장영덕;임명순
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • This study was carried out to develop the forecasting model of Pseudococcus comtocki Kuwana for timing spray. Field phonology and temperature-dependent development of p. comstocki were studied, and its stage transition models were developed. p comstocki occurred three generations a year in Suwon. The 1 st adults occurred during mid to late June, and the 2nd adults were abundant during mid to late August. The 3rd adults were observed after late October. The development times of each instar of p. comstocki decreased with increasing temperature up to 25$^{\circ}C$, and thereafter the development times increased. The estimated low-threshold temperatures were 14.5, 8.4, 10.2, 11.8, and 10.1$^{\circ}C$ for eggs, 1st+2nd nymphs, 3rd nymphs, preoviposition, and 1st nymphs to preoviposition, respectively. The degree-days (thermal constants) for completion of each instar development were 105 DD for egg,315 DD for 1st+2nd nymph, 143 DD for 3rd nymph, 143 DD for preoviposition, and 599 DD for 1 st nymph to preoviposition. The stage transition models of p. comstocki, which simulate the proportion of individuals shifted from a stage to the next stage, were constructed using the modified Sharpe and DeMichele model and the Weibull function. In field validation, degree-day models using mean-minus-base, sine wave, and rectangle method showed 2-3d, 1-7d, and 0-6 d deviation with actual data in predicting the peak oviposition time of the 1st and 2nd generation adults, respectively. The rate summation model, in which daily development rates estimated by biophysical model of Sharpe and DeMichele were accumulated, showed 1-2 d deviation with actual data at the same phonology predictions.

Effects of Temperature on the Development and Reproduction of Phaedon brassicae Baly (Coleoptera: Chrysomelidae) (좁은가슴잎벌레의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon Ahn;Kwang Ho Kim;Hong Hyun Park;Gwan Seok Lee;Jeong Hwan Kim;In-Hong Jeong
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • The brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae), is one of the important pests infesting cruciferous vegetables. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of P. brassicae at four constant temperatures of 15, 20, 25 and 27.5℃ for immature life stage and five constant different temperatures of 10, 15, 20, 25 and 27.5℃ for adult stage. Eggs and larvae successfully developed next life stage at temperature tested. The development period of egg, larva, and pupa decreased as temperature increased. Lower developmental threshold (LDT) and thermal constant (K) were calculated using linear regression as 8.7℃ and 344.73DD, respectively. Lower and higher threshold temperature (TL and TH) from egg to adult emergence were estimated by Briere function as 5.3℃ and 40.4℃, respectively. Adults produced eggs at the temperature range between 10℃ and 27.5℃, and showed an estimated maximum number, ca. 627.5 eggs at 21.7℃. Adult oviposition models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed. Temperature-dependent development models and adult oviposition models would be useful components to understand the population dynamics of P. brassicae and to establish the strategy of integrated pest management in cruciferous crops.

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.