Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.06.0.033

Effects of Temperature on the Development and Reproduction of Matsumuraeses falcana (Lepidoptera: Tortricidae)  

Jeong Joon, Ahn (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science)
Eun Young, Kim (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
Bo Yoon, Seo (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration)
Jin Kyo, Jung (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
Korean journal of applied entomology / v.61, no.3, 2022 , pp. 435-447 More about this Journal
Abstract
The soybean podborer, Matsumuraeses falcana (Lepidoptera: Tortricidae), is one of important pests in soybean crop. In the purpose of forecasting population dynamics of M. falcana, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of Matsumuraeses falcana at seven constant temperatures of 10, 13, 19, 22, 25, 28, and 31℃. Eggs hatched successfully at all temperature subjected. M. falcana developed from egg hatching to adult emergence at the tested temperatures except 10, 13, and 31℃. The developmental period of each life stage and adult longevity of M. falcana decreased as temperature increased. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. falcana were estimated by linear regression as 10.2℃ and 492.04DD, respectively. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. TL and TH from egg hatching to adult emergence using SSI model were 16.7℃ and 29.1℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. falcana was 12.4℃. We constructed the adult oviposition model of M. falcana using adult survivorship and fecundity. Temperature-dependent immature development and adult oviposition models will help constructing the population model of M. falcana and developing the strategies of integrated pest management in soybean fields.
Keywords
Matsumuraeses falcana; Temperature; Development; Nonlinear function; Oviposition model;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ahn, J.J., Choi, K.S., Koh, S., 2019a. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74.   DOI
2 Ahn, J.J., Choi, K.S., Koh, S., 2019b. Using viable eggs to determine oviposition models and life table analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). Korean J. Appl. Entomol. 58, 111-120.   DOI
3 Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844.   DOI
4 Berger, D., Walters, R., Gotthard, K., 2008. What limits insect fecundity? Body size and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology 22, 523-529.   DOI
5 Bochdanovits, Z., de Jong G., 2003. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829-1836.   DOI
6 Braby, M.F., Jones, R.E., 1995. Reproductive patterns and resource allocation in tropical butterflies: influence of adult diet and seasonal phenotype on fecundity, longevity and egg size. Oikos 72, 189-204.   DOI
7 Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29.   DOI
8 Byun, B-.K., Park, K-.T., Park, Y-.M., 2005. Review of genus Matsumuraeses Issiki (Lepidoptera, Tortricidae) with discovery of M. falcana (Walsingham) in Korea. J. Asia-Pacific Entomol. 8, 117-122.   DOI
9 Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438.   DOI
10 Cheng, Y.X., Luo, L.Z., Jiang, X.F., Sappington, T.W., 2012. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet webworm. PLoS ONE 7, e31562.   DOI
11 Cho, J.R., Choi, K.S., Jung, J.K., Park, J.H., Seo, B.Y., 2007. Development of sex pheromone trap for monitoring Matsumuraeses falcana (Walshingham) (Lepidoptera: Tortricidae). J. Asia-Pacific. Entomol. 10, 345-349.   DOI
12 Fand, B.B., Sul, N.T., Bal, S.K., Minhas, P.S., 2015. Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLOS ONE 10, e0124682.   DOI
13 Gu, H., Hughes, J., Dorn, S., 2006. Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol. Entomol. 31, 68-74.   DOI
14 Jandel Scientific, 1994. Tablecurve user's manual san rafael, CA.
15 Heo, H.J., Son, Y.R., Seo, B.Y., Jung, J.K., Kim, Y., 2009. A molecular marker discriminating the soybean podworm, Matsumuraeses phaseoli and the podborer, M. falcana (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 48, 547-551.   DOI
16 Honek, A., 1996. Geographical variation in thermal requirements for insect development. Eur. J. Entomol. 93, 303-312.
17 Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387.   DOI
18 Jiang, X.F., Luo, L.Z., Sappington, T.W., 2010. Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. J. Insect Physiol. 56, 1631-1637.   DOI
19 Jung, J.K., Seo, B.Y., Cho, J.R., 2014. Development of Matsumuraeses phaseoli (Lepidoptera: Tortricidae) reared on an artificial diet under outdoor conditions and its over-wintering stage. Korean J. Appl. Entomol. 53, 287-293.   DOI
20 Jung, J.K., Seo, B.Y., Cho, J-.R., Kwon, Y-.H., Kim, G-.H., 2009. Occurrence of lepidopteran insect pests and injury aspects in adzuki bean fields. Korean J. Appl. Entomol. 48, 29-35.   DOI
21 Jung, J.K., Seo, B.Y., Park, J.H., Moon, J.-K., Choi, B.-S., Lee, Y.-H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Tortricidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semi-synthetic artificial diets. Korean J. Appl. Entomol. 46, 393-399.   DOI
22 Karimi-Malati, A., Fathipour, Y., Talebi, A.A., 2014. Development response of Spodoptera exigua to eight constant temperatures: linear and nonlinear modelling. J. Asia Pacific Entomol. 17, 349-354.   DOI
23 Kobayashi, T., Oku, T., 1980. Sampling lepidopterous pod borers on soybean, in: Kogan, M., Herzog, D.C. (Eds.), Sampling methods in soybean entomology. Springer-Verlag, New York, pp. 422-437.
24 Kim, D.-S., Lee, J.-H., 2010. A population for the peach fruit moth, Carposina sasakii Matsumaur (Lepidoptera: Carposinidae) in a Korean orchard system. Ecol. Modell. 221, 268-280.   DOI
25 Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18.   DOI
26 Kim, D-S., Lee, J-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153.   DOI
27 Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.   DOI
28 Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140.   DOI
29 Oku, T., Miyahara, Y., Fujimura, T., Toki, A., 1983. Preliminary note Matsumuraeses species (Lepidoptera, Tortricidae) injuring soybeans in Tohoku district. Jap. J. Appl. Ent. Zool. 27, 28-34.   DOI
30 Park, C.-G., Yum, K.-H., Lee, S.-K., Lee, S.-G., 2015a. Construction and evaluation of cohort based model for predicting population dynamics of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) using Dymex. Korean J. Appl. Entomol. 54, 73-81.   DOI
31 Park, H.-H., Park, C.-G., Ahn, J.J., 2014. Oviposition model of Cnaphalocrocis medinalis Guenee. J. Asia-Pac. Entomol. 17, 781-786.   DOI
32 Plessis, H.D., Schlemmer M.-L., Van den Berg, J., 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11, 228   DOI
33 Park, H.H., Park, C.-G., Choi, B.-R., Lee, S.-G., Ahn, J.J., 2015b. Thermal effects on the development of Naranga aenescens Moore (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 18, 643-649.   DOI
34 Park, J.-J., Mo, H.-H., Lee, D.-H., Shin, K.-I., Cho, K., 2012. Modelling and validation of population dynamics of the American serpentine leafminer (Liriomyza trifolii) using leaf surface temperatures of greenhouses cherry tomatoes. Korean J. Appl. Entomol. 51, 235-243.   DOI
35 Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179.   DOI
36 R Core Team. 2015. R: A language and environment for statistical computing. R foundation for statistical computing. http://www.r-project.org. (accessed 20 January 2022).
37 Ratkowsky, D.A., Reddy, G.V.P., 2017. Empirical model with excellent statistical properties for describing temperaturedependent developmental rates of insects and mites. Ann. Entomol. Soc. Am. 110, 302-309.   DOI
38 Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory path-ways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511.   DOI
39 SAS Institute, 2004. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
40 Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88, 715-731.
41 Schowalter, T.D. 2011. Insect ecology: An ecosystem approach, 3rd ed., Academic Press, CA.
42 Shirai, Y., 2006. Flight activity, reproduction, and adult nutrition of the beet webworm, Spoladea recurvalis Fabricius (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 41, 405-414.   DOI
43 Seo, B.Y., Jung, J.K., Cho, J.R., Kim, Y., Park, C.G., 2012. A PCR method to distinguish Matsumuraeses phaseoli from M. falcana based on the difference of nucleotide sequence in the mitochondrial cytochrome c oxidase subunit I. Korean J. Appl. Entomol. 51, 365-370.   DOI
44 Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theo. Bio. 64, 649-670.   DOI
45 Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110, 113-120.   DOI
46 Silva, E.D.B., Kuhn, T.M.A., Monteiro, L.B., 2011. Oviposition behavior of Grapholita molesta Busck (Lepidoptera: Tortricidae) at different temperatures. Neotrop. Entomol. 40, 415-420.
47 Sun, B.-B., Jiang, X.-F., Zhang, L., Stanley, D.W., Luo, L.-Z., Long, W., 2013. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), Arch. Insect Biochem. Physiol. 82, 1-13.   DOI
48 Tian, Z., Wang, S., Bai, B., Gao, B., Liu, J., 2020. Effect of temperature on survival, development, and reproduction of Aphis glycines (Hemiptera: Aphididae) autumnal morphs. Fla. Entomol. 103, 236-242.   DOI
49 Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225.   DOI
50 Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297.   DOI