본 연구는 심혈관질환자의 건강행위를 개선할 수 있는 프로그램을 개발하기 위하여 성별차이를 중심으로 건강행위에 미치는 요인의 차이를 파악하기 위하여 수행된 연구로, 경기도와 충남 소재 2개 대학병원에 내원한 심혈관질환자 228명(남자 114명, 여자114명)을 대상으로 하였다. 자료수집을 위한 설문조사는 2013년 1월부터 2013년 2월까지 실시하였으며 수집된 자료는 SPSS 20.0으로 분석하였다. 연구결과 심혈관질환자 남성과 여성사이의 건강행위이행의 유의한 차이가 있었다. 여성이 건강행위 중 운동습관, 스트레스관리, 금연행위에서 남성보다 건강행위를 더 잘하는 것으로 나타났다. 남성과 여성사이의 건강행위의 예측인자는 남성은 연령, 자기효능감, 의료인 지지, 지각된 장애성, 지각된 민감성, 자율적 동기로 45 %를 차지하였고 여성은 연령, 자율적 동기, 자기효능감, 의료인지지로 51%를 차지하였다. 특히 가장 설명력이 높은 변수는 남성은 자기효능감, 여성은 자율적 동기이었다. 따라서 남성과 여성사이의 건강행위의 예측인자가 유의하게 차이가 있는 본 연구결과를 반영하여 심혈관질환자의 지속적인 건강행위이행을 위하여 간호중재 시 성별 특성에 따른 차별화된 방안이 고려되어야 될 것이다.
중고령자의 디지털정보접근수준은 장애인, 청소년 등 다른 계층에 비해 빠르게 증가하고 있다. 하지만 이들을 대상으로 한 디지털정보접근수준과 관련 된 연구는 찾아보기 어렵다. 따라서, 본 연구는 전국의 장·노년층을 대상으로 디지털정보접근수준과 관련된 변인들을 탐색하기 위해 인구사회학적 변인, 신체 및 정신건강 변인이 중고령자의 디지털정보접근수준에 미치는 영향을 확인하였다. 본 연구에서는 한국정보화진흥원의 2018년 디지털정보격차 실태조사 자료 중 55세에서 84세에 해당하는 1661명의 자료를 분석하였다. 위계적 다중회귀분석 결과, 남성과 여성 중고령자 모두 교육수준이 높을수록, 경제수준이 높을수록, 삶의 만족도가 높을수록 디지털정보접근수준이 높게 나타났으며 남성 중고령자의 경우 비독거일수록, 여성 중고령자의 경우 연령이 낮을수록 디지털정보접근수준이 높게 나타나 성별에 따라 차이를 보였다. 본 연구결과는 남·여성 중고령자의 디지털정보접근수준과 관련된 특성들을 이해하고, 중고령자의 디지털정보접근수준 향상을 위한 실천적 개입에 중요한 기초자료로 활용될 것으로 기대된다.
본 연구에서는 성폭력 피해 주장 여성이 주체적인 모습을 보일 때 피해 주장 여성에 더 부정적인 판단을, 가해 혐의 남성에게는 더 너그러운 판단을 하게 될 것이라는 가설을 세워 이를 검증하였다. 또한 이 현상은 주체적인 피해 주장 여성이 피해자다움과 여성성에서 벗어났기 때문일 것으로 예상하여 이들을 매개변인으로 설정하였고, 더불어 남성 참가자들은 여성 참가자들보다 주체적인 피해 주장 여성을 덜 긍정적으로 볼 것으로 판단하여 참가자 성별을 조절변인으로 설정했다. 연구 결과, 가설과 달리 참가자들은 피해 주장 여성이 주체적으로 묘사된 경우 그 여성을 덜 비난하고, 더 긍정적이고 더 진실되어 보인다고 평가하였으며, 가해 혐의 남성에게 유죄와 형량을 더 주었다. 하지만 여성 참가자들보다 남성 참가자들이 주체적인 피해 주장 여성을 덜 긍정적으로 평가하여 예측한 참가자 성별의 조절효과가 확인되었다. 한편 매개효과의 경우 지각된 진실성에서 가설과 일치하는 결과가 도출되었는데, 참가자들은 주체적인 피해 주장 여성이 더 피해자답지 않다고 보았고 그것이 더 낮은 지각된 진실성을 예측했다. 또한 피해 주장 여성이 주체적으로 행동하여 지각된 여성성이 낮다고 여겨질수록 남성 참가자들은 피해 주장 여성 비난을 더 하였고 여성 참가자들은 긍정적인 인상 평가를 더 하였다.
최근 학교폭력의 지속성과 가해와 피해의 악순환이 문제로 떠오르고 있어 장기적이고 다각적인 접근이 시행되어야 할 필요성이 제기되고 있다. 따라서 본 연구는 지속적 가해나 피해를 이끄는 요인으로 이전 시점의 가해와 피해경험에 주목하였으며, 가해피해자 집단에게서 살펴볼 수 있는 역동성은 상호적 인과관계를 통해 살펴보고자 하였다. 또한 이러한 관계에서 성별의 차이가 나타나는 지를 함께 검증하였다. 본 연구는 한국아동·청소년패널조사(KCYPS)의 초등학교 4학년 패널 3차년도부터 6차년도 자료를 활용하였다(N = 1,881). 가해경험과 피해경험 간 관계를 알아보기 위해 자기회귀교차지연 모형을 활용하였고 성별의 차이를 검증하기 위해 다집단 분석을 함께 실시하였다. 본 연구의 결과를 요약하면 다음과 같다. 첫째, 학교폭력 가해경험과 피해경험이 시간에 따라 안정적으로 지속되는 것을 확인하여 이전 시점의 가해경험과 피해경험이 다음 시점의 가해경험과 피해경험을 각각 예측하는 것으로 나타났다. 둘째, 학교폭력 가해경험과 피해경험의 역동성은 유의하지 않게 나타나 이전 시점의 가해경험과 피해경험이 각각 이후 시점의 피해경험과 가해경험을 예측하지 않는 것으로 나타났다. 이에 본 연구에서는 학교폭력 예방과 개입 방안이 단기간에 효과를 내는 일시적 프로그램으로 제공되기 보다는 청소년의 발달적 특성과 학교폭력의 양상을 고려하는 하나의 과정으로써 만들어져야 한다는 것을 제안하고 있다.
본 논문에서는 폐암의 발생에 관여하는 유전자 데이터인 SNP 데이터의 중요도 평가와 SVM 학습법을 이용하여 폐암 감수성을 예측하는 방법을 제안한다. 학습에 사용될 폐암 관련 양성 데이터에 비하여 음성 데이터의 수가 훨씬 많은 이유로 각 양성 데이터에 대하여 같은 성별과 적은 나이 차를 갖는 음성 데이터를 찾아서 쌍이 되도록 한다. 또한 각 SNP가 발병 예측에 미칠 영향력을 계산하는 수식을 도입하여 각 SNP의 중요도를 평가하고 SNP를 중요도에 따라 서열화 한다. 실험에서는 학습에 사용되는 순위별 SNP 개수에 따라 변화되는 예측률을 관측하였고, LOOCV 테스트 결과 제안된 방법은 실험 데이터에 대하여 최대 65.0%의 예측 정확도를 보였다.
본 연구에서는 신경망을 활용하여 청소년의 컴퓨터 오락추구 행동을 설명하는 예측모형을 조사하고자 하였다. 이를 위해 한국청소년 패널 조사(KYPS)의 중 2패널의 1차년도 데이터(총 3449명, 남: 1725명, 여: 1724명)를 대상으로 하여 신경망 모형(모형 1)을 구축하였다. 또한 신경망 모형의 성능을 분석하고자 로지스틱 회귀 분석을 실시하고 로지스틱 회귀 분석과의 보다 정확한 비교를 위해 동일한 변수를 입력데이터 값으로 하는 신경망 모형(모형 2)도 구축하여 세 모형의 예측율을 비교하였다. 그 결과, 신경망 모형 1이 가장 높은 분류적중율을 나타냈으며, 이 모형에 따라 성별, 컴퓨터사용시간, 가구월평균소득, 친한친구수, 비행친구수, 개인공부시간, 자기통제력, 사교육시간, 여가시간, 자기신뢰감, 스트레스, 학교적응, 공부고민 등의 변수들로 청소년의 컴퓨터 오락추구 행동을 예측하는 것이 보다 정확하고 효율적임을 제시하였다. 본 연구의 결과는 청소년의 컴퓨터 오락추구 행동을 예측하고 진단하거나 적절하게 조절 대처하는데 사용될 수 있음을 제언한다.
본 병원에 축적된 의무기록과 데이터베이스에 있는 퇴원 환자 정보를 이용하여 이탈에 영향을 미치는 특성을 파악하여 활용 가능한 예측모형을 제시하고자 한다. 외래진료 방문환자 3,503명 중 충성고객 2,118명 60.5%, 이탈 고객 1,385명 39.5%을 추출하여 분석에 사용하였다. 생존한 변수는 성별, 연령(연령대), 지역, 보험구분, 입원경로, 진료과, 퇴원과, 퇴원형태, 협진여부, 수술여부, 진료예약여부, 환자구분을 기반으로 예측모형을 만들었다. 로지스틱 회귀분석을 실시한 결과 66.0%의 정확도를 나타냈고, 신경망을 통하여 예측한 결과 분석용 결과는 정분율은 69.79%이고, 검정용 결과 정분율은 63.64%였다. CHAID를 통하여 예측한 결과 분석용 결과 정분율을 83.75% 이고, 검정용 결과 정분율은 42.74%였다. 예측 모형을 활용한 이탈고객을 위한 관리와 병원의 신뢰를 높여야 할 것이다.
우리는 응급실을 방문한 65세 이상 노인환자의 의료 데이터를 각각 피드 포워드 신경망과 합성곱 신경망에 학습하여 사망률을 예측하였다. 의료 데이터는 노인환자의 성별, 연령, 체온, 심박 수 등의 기초적인 정보뿐 아니라 과거 병력, 다양한 혈액 검사 및 배양 검사 결과 등 다양하고 복잡한 정보를 포함하여 총 99가지의 자질로 구성된다. 이 중 사망률 예측에 크게 기여하는 자질을 선택하기 위해 랜덤 포레스트를 이용하여 자질의 중요도를 계산하였고, 그 결과 중요도가 높은 상위 80개의 자질을 선택하였다. 선택된 자질을 각각 피드 포워드 신경망과 합성곱 신경망의 학습에 사용하여 두 신경망의 성능을 비교하였다. 합성곱 신경망 학습을 위해 의료 데이터를 고정된 크기의 이미지로 변환하였으며 합성곱 신경망이 피드 포워드 신경망을 이용한 것보다 성능이 좋았다. 합성곱 신경망의 사망률 예측 성능으로 테스트 데이터에 대해 F1 점수는 56.9, AUC는 92.1을 각각 얻었다.
유비쿼터스 컴퓨팅에서 대부분의 시스템들이 개인화된 추천을 위하여 사용자와 성향이 비슷한 사람들의 컨텍스트 정보를 분석하는데 인구통계학적 방법이나 협력적 필터링을 주로 사용한다. 서비스 추천 시스템들은 컨텍스트 정보 중에서 성별, 나이, 직업, 구매이력 등의 정적 컨텍스트를 주로 사용하고 있다. 그러나 이러한 시스템은 이동경로 같은 사용자의 상황을 고려하기가 어렵기 때문에 개인의 성향을 정확하게 분석하여 실시간으로 개인화된 추천 서비스를 제공하는데 한계가 있다. 본 논문에서는 사용자의 상황을 고려하기 위해 동적 컨텍스트 중에서 사용자의 이동경로를 이용한다. 이동경로의 예측 정확도를 높이기 위해 RSOM의 입력으로 들어가는 이동경로를 경로보정 알고리즘을 사용하여 보정한다. 그리고 보정된 경로를 RSOM으로 학습시켜 사용자의 이동패턴을 분석하고 향후 이동경로를 예측한 후, 사용자의 선호도가 높은 상품들 중에서 예측 경로 상에 있는 가장 가까운 상품을 실시간으로 추천한다. 제안한 방법의 예측 정확도를 측정한 결과 MAE가 평균 0.5 이하로 측정됨으로써 사용자의 이동경로를 올바르게 예측할 수 있음을 확인하였다.
국내 보행자 교통사고 건당 사망자수는 차대차 사고의 3배에 달한다. 해당 사고의 약 40%가 횡단 중 발생하며 특히 교차로에서는 차량의 우회전시 보행자-차량간 상충 가능성이 높기에 심각한 사고를 초래할 수 있다. 이에 다양한 보행자 충돌 경고 서비스가 개발되었지만 교차로에서 돌발적인 행동을 하는 보행자와 차량의 충돌을 막기에는 역부족이었다. 이에 본 연구에서는 횡단 이전의 보행자들을 관찰하고 추출된 보행자의 특성을 토대로 보행자의 횡단여부를 예측하여 접근 차량에 경고하는 예측형 보행자 충돌 경고 서비스(P2CWS, Predictive Pedestrian Collision Warning Service)를 개발하였다. 서비스 성능 평가를 위해 대전광역시 유성구 교차로에서 실제 보행자 데이터를 수집하였고 보행자 특성(나이, 성별, 회두여부)의 유무에 따른 비교 분석을 수행하였다. 분석 결과 보행자 특성을 반영한 서비스가 반영하지 않은 서비스보다 성능이 뛰어났으며 이로써 보행자의 횡단 여부를 예측하는데 보행자의 특성을 파악하는 것의 중요성을 확인하게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.