본 연구는 현장조사 및 실내시험을 바탕으로 궤도형식별 열화에 영향을 미치는 핵심매개변수를 도출하였다. 기존 궤도 열화모델은 자갈궤도에 국한된 모델로서 콘크리트궤도의 열화평가는 연구된 것이 없는 실정이다. 본 연구에서는 운행선 궤도형식별 다양한 궤도구조의 특성이 반영된 열화요인을 도출하고자 궤도구성품의 성능수준 및 상태평가를 위한 실내시험을 수행하였다. 또한 궤도유지관리 이력데이터에 대한 분석을 통해 궤도열화 및 유지관리에 영향을 미치는 매개변수를 도출하였다. 현장조사, 궤도유지관리 이력데이터 분석 및 현장시료를 이용한 궤도구성품의 성능시험을 통해 궤도성능기반의 궤도열화 매개변수는 궤도침하 및 궤도지지강성에 직접적인 영향을 미칠 수 있는 도상자갈과 방진패드인 것으로 분석되었다.
강우에 따른 유역 내 유출량은 수문순환에서 중요한 요소 중 하나이며, 과거부터 강우-유출 모델링을 위한 여러 물리적 수문모형들이 개발되어왔다. 또한 최근 딥러닝 기술을 기반으로한 강우-유출 모델링 접근 방식이 유효함을 입증하는 여러 연구가 수행됨에 따라 딥러닝을 기반으로한 유출량 모의 연구도 활발히 진행되고 있다. 따라서 본 연구에서는 물리적 수문모형인 SWAT(Soil Water Assessment Tool)과 딥러닝 기법 중 하나인 LSTM(Long Short-Term Memory)을 사용하여 연구대상지 유출량을 모의했으며, 두 모형에 의해 모의 된 유출량의 극값을 비교 분석했다. 연구대상지로는 영산강 유역을 선정했으며, 영산강 유역의 과거 기간의 기후 변수 모의를 위해 CMIP(Coupled Model Intercomparison Project)6 GCM(General Circulation Model)을 사용했다. GCM을 사용하여 모의 된 기후 변수들은 영산강 유역 내 기상관측소의 과거 기간 관측 값을 기반으로 분위사상법을 사용하여 편이보정 됐다. GCM에 의해 모의 된 기후 변수 및 SWAT, LSTM에 의해 모의 된 유출량은 각각 영산강 유역 내 기상관측소 및 수위관측소의 관측 값을 기반으로 재현성을 평가했다. SWAT 및 LSTM을 사용하여 모의 된 유출량의 극값은 GEV(General Extreme Value) 분포를 사용하여 추정하였다. 결과적으로 GCM의 기후 변수 모의 성능은 과거 기간 관측 값과 비교했을 때 편이보정 후에서 상당히 향상되었다. 유출량 모의 결과의 경우 과거 기간 유출량의 관측 값과 비교했을 때 LSTM의 모의 유출량이 SWAT보다 과거 기간 유출량을 보다 근접하게 모의했으며, 극값 모의 성능의 경우 또한 LSTM이 SWAT보다 높은 성능을 보였다.
본 연구에서는 극초음속 추진기관을 위한 고공환경 모사 설비 장치에서 시험부 안에 들어가는 시험 모델의 변수에 대해 고찰하였다. 시험부에 적용할 시험 모델을 대상으로 진행하고, 시험 모델 형상 변화에 따른 유동 특성을 파악하였다. 시험 모델에 대한 주요 변수는 폐색율, 각도, 받음각으로 설정하였으며, 해석은 EDISON_CFD에서 제공하는 정렬격자 기반 2차원 압축성 유동 범용 해석 SW로 진행하였다. 해석 결과를 통해 다양한 형상 변수에 따라 변화 되는 충격파 뒤의 압력층 두께를 확인 하였고, 압력층 두께가 두꺼워 질수록 시험 조건을 모사 할 수 없음을 확인하였다. 본 연구를 통해 형상 변수에 따른 극초음속 추진기관을 위한 고공모사설비에서 시험부에 적용될 시험 모델의 범위를 확인하였다.
기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈(norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.
영화 수익에 있어 영화의 흥행 여부는 중요한 영향을 끼친다. 영화 흥행 요인은 영화 산업의 규모가 커지면서 많은 제작사들 및 투자자들이 고려해야 하는 사항이 되었다. 따라서 영화의 흥행을 예측하기 위한 많은 모델이 연구되었다. 본 연구의 목적은 선행연구에서 흥행에 유의미한 영향을 끼친다고 밝혀진 스크린 수, 감독명, 제작사명 등의 내재적인 속성과 더불어 온라인 구전 변수를 사용하여 영화 흥행 예측 모델을 만드는 것이다. 이때 기사 수, 블로그 수와 같이 온라인 구전의 크기를 나타내는 변수들을 사용하는 대신 개봉 후 첫 주간의 관람객 리뷰를 텍스트마이닝을 이용하여 전체 리뷰 중 긍정 리뷰의 비율에 따라 점수를 매긴 후 독립변수로 사용한다. 그 후, 데이터 마이닝 기법을 활용하여 만든 모델에 앞서 언급한 독립변수를 입력 값으로 사용하여 영화의 흥행을 예측한다. 최종적으로 의사결정트리와 로지스틱회귀를 수행한 결과 영화 흥행에 영향을 주는 독립변수를 찾고 모델의 성능을 평가하였다. 로지스틱회귀의 결과 관객 수, 평점이 영화의 흥행에 특히 유의한 영향을 끼치는 변수로 선정되었고 리뷰 역시 유의한 변수로 선정되었다. 이때 만들어진 모델은 약 90%의 높은 수준의 정확도를 보여주었다. 의사결정트리의 결과 관객 수가 가장 중요한 변수로 선정되었다.
본 연구에서는 프라이머 도포 여 부 및 압축강도수준 그리고 바닥 마감재 시공재령에 따른 주차장용 바닥 마감재 부착성능을 평가하였다. 또한 현행 KS 기준에서는 바닥 마감재 부착성능을 모르타르 공시체를 활용하여 평가하도록 제안하고 있지만, 실제 현장에서 바닥 마감재는 콘크리트 상부면에 시공되기 때문에 바탕면 변화에 따른 부착성능을 추가변수로 계획하여 평가를 진행하였다. 모르타르는 현행기준에서 제안하고 있는 배합표에 준하여 제작하였으며, 콘크리트 설계기준강도는 18, 30, 50 MPa로 계획하였다. 프라이머는 모르타르 및 콘크리트 재령 28일 변수에 따라 바닥 마감재와 함께 도포되었으며, KS 기준에 준하여 바닥 마감재 재령 일에 따라 부착성능을 평가하였다. 변수에 따른 부착성능 평가결과 바닥 마감재 재령이 경과함에 따라 바닥 마감재 부착성능은 향상되는 것으로 나타났으며, 압축강도가 높아짐에 따라 바닥 마감재 부착성능 또한 향상되는 것으로 나타났다. 이는 파괴양상을 고려하였을 때 콘크리트 쪼갬 인장강도의 영향을 받은 것으로 판단된다. 프라이머 도포에 따른 부착성능은 유사한 것으로 나타났으며, 프라이머의 사용은 부착강도에 문제없이 콘크리트 표면의 내구성을 향상시킬 수 있을 것으로 판단된다. 또한 콘크리트 및 모르타르 바탕면의 부착강도 특성을 비교한 결과 바닥재의 부착강도는 구성재료 보다 압축강도에 큰 영향을 받는 것으로 나타났다. 따라서 현행 KS 기준의 모르타르 바탕면 실험체의 부착강도를 근거로 실제현장의 부착강도를 예측할 수 있을 것으로 판단된다.
2020년 코로나19 발발 이후 한국 경제를 포함한 국제 시장 환경은 급속하게 변하고 있고 한국 금융시장의 중요 경제 지표인 원/달러 환율도 요동치고 있다. 대외 의존도가 높은 한국 경제에서 환율에 대한 이해는 항상 중요한 연구 과제였고, 특히 코로나 확산이 환율에 미치는 연구는 시기적으로 많은 경제 학자들의 관심사이기도 하다. 따라서 본 연구는 코로나19 발발 이후 환율과 경제 지표의 관계를 분석하고 환율 예측을 위한 단변량 다변량 예측 모형을 구축하여 모형의 예측 성능을 비교 검증을 하였다. 코로나 전후 기간을 세 기간으로 나눠서 기간 1은 코로나 발발전과 초기, 기간 2는 코로나 대확산, 기간 3을 코로나 안정기로 나누고 기간 1의 환율 데이터를 학습한 SARIMA 모형과 같은 기간의 경제 변수와 환율 데이터를 학습한 ARDL 모형의 예측 성능을 비교하였다. 기간별 RMSE기준으로 SARIMA 모형은 기간 2에서 예측 성능이 뛰어나고 ARDL 모형은 기간 3에서 예측 성능이 가장 우수한 것으로 나타났다. 연구 결론은 환율과 경제 변수의 통상적인 관계가 나타나는 기간 3에서는 변수 관계를 반영하는 ARDL 모형이 좀 더 예측 성능이 좋은 모델이고 기존의 전형적인 환율과 경제 변수의 패턴에서 벗어난 과도기 시기인 기간 2에는 과거 환율 추이만 반영하는 SARIMA 모형이 좀 더 우수한 예측 성능을 보여주는 모델로 검증되었다.
본 논문의 목적은 신뢰성 있는 선형회귀모델을 구축하기 위하여 후보독립변수 중 유효변수를 선택하는 알고리즘을 구현하는 것이다. 선형회귀모델을 구축하는데 있어서 데이터 상의 모든 후보독립변수를 포함하는 것은 모델의 통계적 유의성을 감소시킬 수 있으며, 차원의 저주(Curse of dimensionality)를 유발할 수 있고, 데이터의 개수보다 변수의 개수가 많을 경우 모델의 구축이 불가능한 문제점 등이 있다. 이와 같은 문제점을 해결하기 위하여 변수선택의 문제를 조합최적화의 문제로 보고 유전 알고리즘(Genetic Algorithm)을 활용하였다. 일반적으로 선형회귀모델의 통계적 유의성을 평가하는 대표적인 통계량으로는 종속변수에 대한 독립변수의 설명력을 나타내는 결정계수($R^2$), 회귀식의 통계적 유의성을 검정하는 F통계량, 회귀계수의 통계적 유의성을 검정하는 t통계량, 잔차의 표준오차 등이 있다. 모델의 통계적 유의성은 하나의 통계량으로 표현될 수 없으므로 다양한 기준을 고려한 다중목적식(Multi-objective function)을 가지는 유전 알고리즘을 설계하였다. 설계한 알고리즘의 성능평가를 위하여 다양한 조건을 가정한 시뮬레이션 데이터에 적용하였다. 그 결과 구축한 알고리즘이 유효변수를 판단함에 있어 기존의 대표적인 변수선택 알고리즘인 LARS(Least Angle Regression)에 비해 우수한 성능을 보임을 확인할 수 있었다. 또한, 주가 데이터를 이용한 포트폴리오 선택에 적용해 본 결과 우수한 응용문제 해결 능력이 있음을 확인할 수 있었다.
The torque converter, a major part of automatic transmissions, has many difficulties in analysis due to the factors such as power transmission through fluid flow, complex internal geometry, and various operating conditions. Because of such difficulties, the dynamic analysis and design of a torque converter are generally carried out by using equivalent performance model which is based on the concept of mean flow path. Since the design procedures of a torque converter are essential technology of automotive industry, the details of the procedures are rarely published. In this study, the basic design procedures of a torque converter are systemized and coded based on the equivalent performance model. The mathematical methods to deal with mean flow path determination and the core-shape are developed. And by using this model, the method of determination of performance parameters satisfying the requested performance is proposed. Finally, to embody the three-dimensional shape, the intermediate blade angles which maximize the tractive performance are determined and laid out.
본 논문에서는 일반적인 코드분할 다중화 시스템을 위해 저자가 제안하였던 유사 역상관기 (pseudo-decorrelator)를 변형하여 광대역 코드분할 다중화 시스템에 적합한 다중사용자 수신기를 설계하고, 레일레이 다중 경로 채널 환경에서 성능을 분석하고 있다. 설계된 수신기에서는 판단변수 (decision statistics)에 포함되어 있는 다중사용자 간섭신호를 분석하여, 송신된 신호의 각 비트에 대응되는 상호상관 행렬을 얻게 된다. 이 상호상관 행렬에 대한 일반 역행렬을 구한 후 기존의 수신기에서 얻어진 판단변수에 적용함으로써, 수신기의 성능을 향상시킬 수 있다. 제안된 수신기는 원근저항성을 가질뿐 만 아니라, 동기검출 회로가 완전하지 않아서 시간지연 오차나 위상 오차가 생기는 경우에도 기존의 수신기에 비해 좋은 성능을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.