• Title/Summary/Keyword: 섭동효과

Search Result 58, Processing Time 0.027 seconds

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation (선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가)

  • Kim, Junseong;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

Growth of Silicon-Germanium Quantum-dots Through Local Enhancement of Surface Diffusivity (표면확산계수의 국소적 향상을 통한 실리콘-게르마늄 양자점의 성장)

  • Kim, Yun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.653-657
    • /
    • 2015
  • A numerical investigation to simulate the selective growth of silicon-germanium quantum-dots via local surface diffusivity enhancement is presented. A nonlinear equation for the waviness evolution of film surface is derived to consider the effects of spatially-varying diffusivity, influenced by a surface temperature profile. Results show that the morphology of the initially planar film shapes into an undulated surface upon perturbation, and a steady-state solution describes a fully grown quantum-dot. The present study points toward a fabrication technique that can obtain selectivity for self-assembly.

HEXKIN : A Quasistatic Approach to Spatial Kinetics Problems in a Hexagonal Lattice Reactor

  • Kim, Hyun-Dae;Oh, Se-Kee;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 1980
  • The quasistatic approximation is incorporated in HEXKIN, a 2-group, 2-dimensional reactor kinetics code specially developed for a hexagonal lattice-type reactor. The code allows maximum 15 delayed neutron groups, 279 lattice points, and 500 different driving functions to be able to initiate perturbation at each lattice point. Reactivity feedback due to power-dependent fuel temperature change is also involved. To check the accuracy of the code, a result of numerical experiment is compared with the measurement at the Savannah River Laboratory. The experiment was specifically designed to emphasize delayed neutron holdback. The calculated flux tilts agree with the measured flux tilts within the small uncertainty of the measurements.

  • PDF

Effects of Periodic Blowing Through a Spanwise Slot on a Turbulent Boundary Layer (II) - Effects of Blowing Frequency - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (II) - 분사 주파수의 효과 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • A direct numerical simulation is performed to analyze the effects of a localized time-periodic blowing on a turbulent boundary layer flow at R $e_{+}$=300. Main emphasis is placed on the blowing frequency effect on near-wall turbulent flow structures at downstream. Wall-normal velocity on a spanwise slot is varied periodically at different frequencies (0.004$\leq$ $f^{+}$$\leq$0.080). The amplitude of periodic blowing is $A^{+}$=0.5 in wall nit, which corresponds to the value of $v_{rms}$ at $y^{+}$=15 without blowing. The frequency responses are scrutinized by examining the phase or time-averaged turbulent statistics. The optimal frequency ( $f^{+}$=0.03) is observed, where maximum increase in Reynolds shear stress, streamwise vorticity fluctuations and energy redistribution occurs. The phase-averaged stretching and tilting term are investigated to analyze the increase of streamwise vorticity fluctuations which are closely related to turbulent coherent structures. It is found that the difference between PB and SB at a high blowing frequencies is negligible.e.e.

Simulation of Standing Wave using Boundary Element Method (경계요소법(境界要素法)을 이용한 중복파(重複波)의 재현(再現))

  • Oh, Young Min;Lee, Kil Seong;Chun, In Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1445-1451
    • /
    • 1994
  • To calculate the wave pressure acting on coastal structures under the design wave condition, it is often necessary to numerically reproduce the big standing wave profiles close to wave breaking condition. For this, the governing equation and all nonlinear terms occurring in boundary conditions should be effectively considered in the numerical wave profile. In particular, the velocity square term in the free surface boundary condition is very important. A boundary element method is applied here to calculate the standing wave profile with the velocity square term fully treated by Newton iterative method. In order to check the validity of the method, the numerical wave profiles are compared to ones calculated by the perturbation method, the Fourier approximation method and the hydraulic experiment.

  • PDF

A Comparative Study of Frequency Response Models for Pressure Transmission System (압력전달시스템을 위한 주파수응답모델들의 비교 연구)

  • Kim, Hyeonjun;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • Dynamic pressure transducer needs to be flush-mounted on hardware due to frequency response characteristics of pressure transmission system. However, it is sometimes necessary to be mounted in recessed configuration due to insufficient space for sensor installation and for protection of sensor from thermal damage. Dynamic response characteristics should be considered due to distortion of original dynamic pressure signal in the pressure transmission system. In this study, small perturbation model and 2nd order reduced model were compared with experiments and a guideline for selecting a frequency response model was suggested.

Propagation Speed of Torsional Elastic Waves In a Cylinder with a Periodically Corrugated Outer Surface (외면이 주기적으로 울퉁불퉁한 실린더에서 비틂 탄성파의 전파속도)

  • 김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.54-60
    • /
    • 1999
  • The paper describes a theoretical study on the speed of the torsional elastic waves propagating in a circular cylinder whose outer radius varies periodically as a harmonic function of the axial coordinate. The approximate solution for the phase speed has been obtained using the perturbation technique for sinusoidal modulation of small amplitude. It is shown that the wave speed in the cylinder with a corrugated outer surface is less than that in a smooth cylinder by the square of the amplitude of the surface perturbation. This theoretical prediction agrees reasonably with an experimental observation reported earlier. It is also shown that the wave speed reduction due to the surface corrugation becomes larger for a thinner cylinder and for a bigger density of corrugation.

  • PDF

Compact and Low Insertion Loss Dual-Mode Resonator and Its Applications for Switchable Filters (낮은 삽입손실을 갖는 소형 이중모드 공진기와 스위치 기능을 가진 여파기로의 응용)

  • 성영제;김보연;이건준;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2004
  • In this paper, a compact dual-mode filter structure without coupling gaps is proposed. The novel design is achieved by embedding a pair of equal crossed slots and spur-lines. Without coupling gaps between feed lines and patch resonator, the new filter can provide low insertion loss. It is found that this design has wide coupling range for dual-mode operation. It means that these characteristics of the proposed filter can reduce uncertainty in fabrication. By using two PIN diodes mounted inside a pair of spur-lines, the proposed structure works as a switchable filter. Also, it has a size reduction of about 34.7 %, compared with conventional dual-mode filters.

Robust Speed and Efficiency Control of Induction Motors via a Simplified Input-Output Linearization Technique (단순화된 입출력선형화방법에 의한유동전동식의 강인한 속도 및 효솔제어)

  • 김규식;고명삼;하인중;김점근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1066-1074
    • /
    • 1990
  • In this paper, we attempt to control induction motors with high power efficiency as well as high dynamic performance by utilizing the recently developed theories : singular perturbation technique and noninteracting feedback control. Our controller consists of three subcontrollers` a saturation current controller, a decoupling controller, and a well-known flux simulator. The decoupling controller decouples rotor speed (or motor torque) and rotor flux linearly. Our controller does not need the rotor resistance that varies widely with the machine temperature. To illuminate the practical significance of our results, we present simulation and experimental results as well as mathematical performance analysis.

Numerical Study of Nonlinear Acoustic Damping Induced by Acoustic Resonators in a Combustion Chamber (음향공명기의 비선형 음향감쇠 특성에 관한 수치적 연구)

  • Sohn, Chae-Hoon;Park, I-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.13-16
    • /
    • 2007
  • Nonlinear acoustic damping of a half-wave acoustic resonator in a combustion chamber is investigated numerically. First, in a baseline chamber without any resonators, acoustic behavior is investigated over the wide range of acoustic amplitude from 80 dB to 150 dB. Decay rate increases nonlinearly with acoustic amplitude and nonlinearity becomes appreciable at acoustic amplitude above 125 dB. Next, damping effect of a half-wave resonator is investigated. Nonlinear acoustic excitation does not affect optimum tuning condition of the resonator, which is derived from linear acoustics. A half-wave resonator is effective even for acoustic damping of high-amplitude pressure oscillation, but its function of acoustic damper is relatively weakened compared with the case of linear acoustic excitation.

  • PDF