• Title/Summary/Keyword: 섭동이론

Search Result 97, Processing Time 0.028 seconds

Some Asymptotic Stability Theorems in the perturbed Linear Differential System

  • An, Jeong-Hyang;Oh, Yong-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • We investigate sorry: asymptotic stabilities of the zero solution for the perturbed linear differential system dx/dt=A(t)x+e(t, x)+f(t,x), by using Perron's method and integral inequalities, etc. and we also find some sufficient conditions that ensure some asymptotic stabilities of the zero solution of the system And hence we obtain several results of it.

  • PDF

Vibration Reduction of an Optical Disk Drive Using an Automatic Ball Balancer (자동 볼 평형장치를 이용한 광 디스크 드라이브의 진동 저감)

  • 이동진;정진태;노대성
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.355-362
    • /
    • 1999
  • Vibration reduction of an optical disk drive is achieved by an automatic ball balancer and dynamic behaviors of the drive are studied by theoretical approaches. Using Lagrange's equation, we derive nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of equilibrium positions, the Floquet theory is applied to the perturbed equations. On the other hand, time responses are computed by an explicit time integration method. We also investigate the effects of mass center and the position of the ABB on the dynamic behaviors of the system.

  • PDF

Nonlinear Interaction of Second Order Stokes Waves and Two-Dimensional Submerged Moored Floating Structure (2차원잠수계류부체와 2차Stokes파와의 비선형간섭에 관한 연구)

  • Kim, D. S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.37-51
    • /
    • 1996
  • 2차의 섭동법과 경계요소법에 기초한 시간영역해석법은 불규칙파의 파동장에 있어서 파-구조물의 비선형간섭을 해석할 수 있는 해석법이지만. 파와 구조물의 운동이 정상상태에 도달하기까지 시간스텝으로 계산을 수행하여야 하므로 계산시간이 매우 길어지고, 각 성분파와 그에 의한 운동요소를 평가하는 것이 어렵다. 반면에 주파수영역해석법은 계산시간이 짧고, 각 성분요소들의 변화특성을 쉽게 판단할 수 있지만, 불규칙파동장으로의 적용이 현실적으로 어렵다는 단점을 가진다. 본 연구에서는 잠제 등에 대해서 전개되어 있는 주파수영역해석법을 임의형상의 부체 구조물에 대해 새롭게 수식의 전개를 수행하고, 압축공기주입 부체구조물에 적용하여 실험 및 이론해석결과로부터 그의 타당성을 확인한다. 이 때 압축공기의 거동은 Boyle법칙을 사용하여 평가한다.

  • PDF

Dispersion in the Unsteady Separated Flow Past Complex Geometries (복합지형상에서 비정상 박리흐름에 의한 확산)

  • Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.512-527
    • /
    • 2001
  • Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed to be rotational and inviscid, and a new techlnique is described to determine the stream functions for linear shear profiles. The geometries considered are the snow cornice and the backward-facing step, whose edges allow for the separation of the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature. Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points. This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the simulation of the flow passed a snow cornice performed by a discrete multi-vortex model, as well as with direct numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for the intense large-scale concentration fluctuations downstream.

  • PDF

STATION-KEEPING MANEUVERS FOR A GEOSTATIONARY SATELLITE USING LINEAR QUADRATIC REGULATOR (선형제차조절법을 이용한 정지궤도 위성의 위치보존 궤도조정)

  • 이선익;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • This paper applied one of the well-known optimal control theory, namely, linear quadratic regulator(LQR), to the station-keeping maneuvers(SKM) for a geostationary satellite. The boundary conditions to transfer the system with a good accuracy at a terminal time were based upon the predicted orbital data which are created due to the Earth's non-uniform mass distribution's effect during 14 days and due to luni-solar effect during 28 days. Through the linearization of the nonlinear system equation with respect to reference orbit and the numerical integration of Riccati equation, the optimal trajectories and the corresponding control law have been obtained by using LQR. From the comparison of ${\Delta}V$ obtained by LQR with the ${\Delta}V$ obtained anatically by geometric method, Station Keeping Maneuvers(SKM) via LQR may provide comparable results to a real system. Furthermore it will demonstrate the possibility in fuel optimization and life extension of geostationary satellite.

  • PDF

Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation (페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석)

  • Kim, Jae-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • Using the bond-based peridynamics and the parallel computation with binary decomposition, an adjoint shape design sensitivity analysis(DSA) method is developed for the dynamic crack propagation problems. The peridynamics includes the successive branching of cracks and employs the explicit scheme of time integration. The adjoint variable method is generally not suitable for path-dependent problems but employed since the path of response analysis is readily available. The accuracy of analytical design sensitivity is verified by comparing it with the finite difference one. The finite difference method is susceptible to the amount of design perturbations and could result in inaccurate design sensitivity for highly nonlinear peridynamics problems with respect to the design. It turns out that $C^1$-continuous volume fraction is necessary for the accurate evaluation of shape design sensitivity in peridynamic discretization.

Coupling Efficiency of Optical Directional Coupler with Rib-Type (Rib형 광 방향성 결합기의 결합효율)

  • Lee, Won-Seock;Ho, Kwang-Chun;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.86-92
    • /
    • 1999
  • A rigorous modal transmission-line theory (MTLT) based on effective dielectric method (EDM) is introduced and developed for the design of optical directional couplers with rib-type. This approach provides a rigorous numerical algorithm that takes all the possible guided components into consideration, and thus may serve as an appropriate reference to access the accuracy of such simplified methods as effective index method (EIM) and perturbation theory. Consequently, to search the optical parameters for maximum power coupling of the optical couplers, we evaluate the operating wavelength, the interval S between rib guides and the thickness t of a cladding layer.

  • PDF

Generalized Integral Hellmann-Feynam Theorem and Configuration Interaction in Crystal Field Theory (광의의 Integral Hellmann-Feynman Theorem과 결정장론에서의 배치간 작용의 효과)

  • Ho Jing Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.198-205
    • /
    • 1976
  • The integral Hellmann-Feynman Theorem of Parr is generalized to give a full significance to the off-diagonal form, and certain aspects of it are discussed. By use of the generalized form of the theorem, effects of configuration interaction to the crystal field theory are examined, taking perturbation energies of all order collectively into account. Thus, it is shown that there do not exist, especially when the field is strong, the radial integral which is common to all states characterized by ${\Gamma}$, S and m, and could be parametrized. If, however, one restricts the perturbing excited states only to those angularly undistorted and radially equally distorted, there results simple scaling of the crystal field parameter 10 Dq and Condon-Slater parameter $F^n$ defined within the framework of the classical crystal field theory.

  • PDF

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도 응답 해석)

  • 김인학;독고욱
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • Most dynamic systems have are known to various random properties in excitation and system parameters. In this paper, a procedure for response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameters and responses with random properties are modeled by perturbation technique, and then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an applicative example, the transient response is considered for systems of single degree of freedom with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF