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Abstract:  Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed
to be rotational and inviscid, and a new technique is described to determine the stream functions for linear shear profiles.
The geometries considered are the snow comice and the backward-facing step, whose edges allow for the separation of
the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order
to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order
to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature.
Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the
equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of
passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are
numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points.
This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the
simulation of the flow passed a snow comice performed by a discrete multi-vortex model, as well as with direct
numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows
undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for
the intense large-scale concentration fluctuations downstream.
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INTRODUCTION

Transport and dispersion of passive scalars in tur-
bulent boundary layers over complex geometries are
an important problem of practical relevance, which
has been widely investigated in recent years mainly
because of a growing concern about the environmen-
tal issue, but also because of its engineering applica-
tions such as optimization of combustors or evaluation
of mixing properties of flows in chemical reactors.

However, the complexity of flows in which sepa-
ration and reattachment occur makes them less suit-
able to analytical studies than regular boundary layer
flows. Relatively little is known about the behaviour
of a plume near hills or buildings, or in general
over irregular terrain (Hosker, 1984). For a classi-
cal problem like the flow over a backward-facing
step, that is no applicable mathematical technique
for modeling the evolution of the scalar field. Lab-
oratory experiments generally provide an Eulerian
portrait of this flow (e.g. Bradshaw and Wong,
1972), but with no insight into the dispersion pro-
cess. More recently, Le et al. (1997) performed a
direct numerical simulation of a backward-facing
step for Reynolds numbers as high as 5100 revealing,
among the others, some of the unsteady flow char-
acteristics. They detected the oscillation of the (span-
wise-averaged) reattachment location, in agreement
with the results of several other works (e.g. Driver
et al., 1983, 1987). The shear layer composed of
many small high-intensity vortices, which extends
to the reattachment point, rolls up forming a large-
scale structure in the recirculation region: the peri-
odic detachment of this large-scale vortex from the
step causes the oscillation of the reattachment point.

The main aim of this paper is to model the un-
steadiness of reattached flows, and to assess how it
affects the dispersion of passive scalars released by
a continuous point source.

We will model separated flows by means of point
vortex techniques, assuming the flow as two-dimen-
sional and inviscid. We will consider two different
geometries: a backward-facing step, and a “snow

comice”. Snow cornices are natural devices that
control the flow separation on mountains crests by
trapping vortices. The modeling technique is not new:
Ringleb (1961) studied the steady separated flow
past a snow cornice assuming a two dimensional
potential flow, which allowed him to solve the prob-
lem analytically by means of the classical method
of conformal mapping. To represent a snow cornice,
Ringleb devised mappings to transform the real axis
in the complex {-plane onto a line forming a sharp
edge in the complex z-plane. In this way the com-
plex potential of a uniform flow over the real axis
in the {-plane was ascribed to the flow on the cor-
responding region in the z-plane. A point vortex
(and its reflected image) were added to the flow to
model the recirculating region. The vortex was in
equilibrium and satisfied a steady Kutta condition.
In a more recent paper, Cortelezzi et al. (1994)
apply point vortex techniques to model the unsteady
separated flow over a semi-infinite plate, and to assess
active control techniques.

Because of the incompressibility condition, the
Lagrangian motion of a passive scalar is governed
by a Hamiltonian system whose conjugate variables
are the Cartesian coordinates of the scalar, and whose
Hamilton function is the streamfunction. The motion
of a point vortex is governed by a Hamiltonian sys-
tem as well, where the Hamilton function is related
to the Green function for the Laplacian of the flow
region (Masotti, 1931; Lin, 1941).

In this respect, the motion of the vortex in the
Ringleb model is integrable since it is governed by
a one-degree of freedom autonomous Hamiltonian
system. Incidentally, although Ringleb made a formal
error on determining the law of the motion of a vor-
tex in the presence of a wall, and therefore failed to
derive the correct equilibrium conditions, his results
are qualitatively correct.

The streamfunction, that is the Hamiltonian of the
fluid particles, depends on the vortex position and
therefore is in general time-dependent (non-autono-
mous). For such a system we expect a non integra-
ble, chaotic, particle motion (Novikov and Sedov,
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1979; Aref, 1983). However, if the vortex is located
at its equilibrium point, the Hamiltonian of the par-
ticles is autonomous and the motion is integrable
and regular. For the integrable case, the flow field
is virtually divided in two main bodies: the fluid
entrained by the vortex (closed streamlines encircling
the vortex), and the free-stream flow (open stream-
lines). The two regions do not exchange fluid with
each other and are separated by a streamline which
leaves the sharp edge of the wall, and reattaches
downstream (i.e. a heteroclinic orbit). For instance,
in the transformed {-plane this flow is a vortex
pair, where the real axis is the line of symmetry.

The present model is different from Ringleb’s in
three main aspects:

(i) 1 assume a shear flow as the asymptotic
upstream condition in order to have a more mean-
ingful flow than the potential one, but still simple
enough to allow for an analytical study;

(ii) the system has been made unsteady by per-
turbing the equilibrium of the vortex;

(iii) finally, I consider geometries where the
sharp corners are smoothed to blunted edges with
large but finite curvature, to satisfy an unsteady
Kutta condition for a vortex of constant circulation
not in equilibrium.

The large curvature edge still causes separation,
in that according to the Kutta condition it is possi-
ble to define a vortex whose strength produces sep-
aration. A vortex slightly displaced from its stable
equilibrium moves along a small periodic orbit, and
causes the oscillation of the detachment point around
the maximum curvature point. Since the edge is
smooth, the flow around the edge does not have any
singularities and the Kutta condition can be consid-
ered to be fulfilled.

On the transformed {-plane, the flow reduces to
the oscillating vortex pair (OVP). Rom Kedar er al.
(1990) studied the OVP flow extensively, and eluci-
dated the mechanisms of the phase-space Lagrangian
chaos. The stable and unstable manifolds of the
heteroclinic orbit intersect each other, and drive the
fluid to be entrained and detrained by the vortex.

The Eulerian counterpart of this phenomenon is the
chaotic mixing of the fluid in the region surround-
ing the separatrix streamline. I am interested in the
effects of these phenomena on the dispersion of
scalars.

I investigated how the separation and reattach-
ment of an unsteady flow influence the behaviour
of effluent plumes released near or inside the recir-
culating region. I found that the presence of the
recirculation bubble dramatically affects the large-
scale dynamics of passive scalars, causing impor-
tant fluctuations of the concentration field down-
stream.

In the following sections the Ringleb model for
steady potential flow is recalled, then a method is
proposed to study analytically unsteady rotational
flows with constant vorticity. Dynamical systems for-
malism is used to find equilibrium configurations,
to discuss their stability and to recognize and quan-
tify chaotic mixing. Numerical simulations for two
different geometries are presented, along with the
concentration time series at several sampling points.

MATHEMATICAL FORMULATION OF
THE STEADY POTENTIAL FLOW

In this section I describe a mathematical model
of recirculating flow over complex geometries such
as a snow cornice and a backward-facing step. This
model, which was proposed by Ringleb (1961), is
able to represent two-dimensional steady separa-
tion from the edge. It constitutes the basis for the
model of unsteady, recirculating shear flow, which
we present in §3.

I consider a region bounded by a piecewise ana-
Iytical curve in the z-plane, where z=x+iy. The
solid boundary extends to infinity along the x-axis,
and is characterized by a sharp comer. As a conse-
quence of the Riemann mapping theorem (see, e.g.,
Nehari 1975; Henrici, 1974), such a region can be
obtained as the conformal image of the half-plane
N 20 in the {-plane, where £ =& + in. The infinity
in the z-plane corresponds to the infinity in the &-
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plane. For instance, the function suggested by Rin-
gleb (1961), that is:

where {;=&;+in; is a complex constant with n; <
0, yields to the geometry plotted in Fig. 1a. The back-
ward-facing step shown in Fig. 1b can be obtained
by the Schwartz-Christoffel mapping:

= JG-1 +log(§ + JG*-1) : @

The model consists of a vortex of constant strength
which satisfies a Kutta condition, in equilibrium with
a steady free-stream velocity.

The complex potential of the flow is built by
superimposition of basic flows: in the {-plane it is
expressed by the function:

C—Co)
w=q.0+ 2mlog(c_(;:,; 3
where q.. is the free-stream velocity, and the second
term on the right hand side is the complex potential
of a point vortex of strength 7y located at {y and of

(®)

Fig. 1. () The snow comice obtained by the Ringleb map-
ping; (b) the backward-facing step obtained by the Schwartz-
Christoffel mapping.

its image at the complex conjugate position Cg
Equation (3) represents the complex potential of a
vortex pair of opposite signs in thezeta {-plane (see
Fig. 7).

Since the complex potential is invariant under a
conformal mapping z = z({), the constant q.. is equal
to the free-stream velocity Q.. in the z-plane:

dw dw(dzY'

Q. =lim'e = é‘i‘odg(dg) = G- @
The trajectories of a vortex in the physical z-plane
are the solutions of the Hamiltonian system:

_OJH . _9H

Xo= a—yo,}’o = ~ox (%)
where the Hamiltonian H can be derived from the
Hamiltonian H' of a vortex in the {-plane, according
to the Routh rule (e.g. Clements, 1973):

dz,

H=H+ Y log 4z T ©)
0]
where:
H' = q.no + zLlog,. ™

A derivation of the Hamiltonian H' and of the
Routh transformation rule is given in Appendix A.

Steady Kufta Condition

The separation of a flow around a sharp or a
large curvature corner is captured by the model if it
satisfies the Kutta condition, that is, a relationship
between the strength of the vortex and its position
in order to eliminate the singularity of the flow.
Therefore, the condition of zero velocity at the
edge is imposed:

dw)
= =0 8
(dC t=¢, ®
where {; indicates the location of the corner in the
{-plane.

For the complex potential w({) (3), the Kutta
condition is satisfied when
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X = __n"lCc"COl )

q- Mo
where we notice that there are infinite possible
values for the ratio Y/q.. For the mapping (1) { =
0, whereas (.-, for (2).

On the physical plane, the complex velocity at
the corner ¢ is

limed¥ = Jjm dWdS

z7Z, dZ g-»gca—ca (10)

whose value is finite when the corner is a cusp, as
in the case of mapping (1), while it is null in the
other case.

In order to complete the modeling of the recircu-
lating flow, we are now concerned with finding the
equilibrium conditions for the vortex. We recall that
the phase space of the dynamical systems (5) coin-
cides with the flow region, in the sense that the
Cartesian coordinates of the vortex (xo, Yo) repre-
sent the conjugate variables, and the level lines of
the Hamiltonian H form the pattern of the possible
trajectories of a vortex of assigned strength. There-
fore the equilibrium locations (X0 = 0,yo=0) are
the fixed points of this map: the elliptic points cor-
respond to stable equilibrium, the hyperbolic ones to
unstable. The model of a steady recirculating flow
behind a corner is represented by a vortex in sta-

ble equilibrium (i.e. a trapped vortex), and satisfy-
ing the Kutta condition.

The solutions to the equilibrium equations, if any,
depend on the geometry of the solid boundary and
on the ratio of the vortex intensity to the asymp-
totic velocity, i.e. ¥/q.. Since the geometries we
considered were found to allow vortex capturing,
we expect a set of stable solutions.

Therefore, the vortex coordinates (o, To) on the
{-plane have to satisfy simultaneously the equilib-
rium condition and the Kutta condition (9). They
are the solutions of the equation:

=8 1d% .g( d_ca) -
The vortex strength is then obtained by the Kutta
condition (1).

Comparison with a Multiple Vortex Method

The accuracy of the above vortex model has been
checked by comparing some of the results with those
generated by a more sophisticated vortex method.
We used a discrete vortex method (Ceschini, 1993;
Ferlauto, 1996) to describe the impulsive start of
the flow characterized by vortex shedding. I per-
formed the simulation for the snow-cornice geome-
try. The method consists in assuming the initial flow

Fig. 2. Simulation of the flow past a snow comice by a multiple vortex method. The solid circles represent the vortices shed
throughout the transient. The vortices strengths are proportional to the symbol sizes.
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around the wall as potential, and satisfying an unsteady
Kutta condition by adding a free point vortex of
suitable strength in a prescribed location close to the
corner. The vortex moves because of, and accord-
ing to, the wall and the background flow. The
motion is then numerically integrated. At given
time intervals a new vortex is introduced into the
flow to restore the regularity. Fig. 2 shows the pat-
tern of the vortices shed throughout the transient,
where the vortices strengths are proportional to the
symbol sizes. The transient is characterized by a
vortex sheet rolling up around the point of highest
absolute circulation. This result is consistent with the
description of the transient as given by Cortelezzi
et al. (1994) and Le et al. (1997) for other vortex
trapping flows. The vortex sheet increases in size and
circulation until eventually reaching a more steady
configuration, with small oscillation of its global
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Fig. 3. (a) Total circulation for the multiple vortex method
along with the circulation for the single vortex model, as a
function of time; (b) distance of the centroid for the multi-
ple vortex method from the equilibrium point of a single
vortex.

circulation and centroid.

I compared the asymptotic circulation and the
centroid location with the strength and location of
the single point vortex used in our model (the cen-
troid location is evaluated assuming the strengths
as masses). We plot in Fig. 3a the total circulation
as a function of time, along with the circulation for
the single vortex model; in Fig. 3b the distance of
the centroid from the equilibrium point of a single
vortex. The two models are in good agreement
with each other as far as the intensity of the vortic-
ity field and the location of the centre of vorticity
are concerned, showing that the large-scale charac-
teristics of the flow are well captured by a single
vortex model. Of course, the strength of the single
vortex model is in its simplicity, which permits the
analytical description of a large-scale mechanism
of dispersion, as discussed in §4.

SHEAR FLOW

In this section we describe a method to model
the separation and recirculation of a shear flow
over complex geometries. The representation of the
mean flow vertical profile by power laws is often
used in the atmospheric boundary layer in stable
conditions. For instance, a linear shear profile has
been considered by Hunt et al. (1988) to study
how the shear affects the flow past hills with low
slopes.

I assume a rotational flow field, with vorticity
VXq =w=const and with the following velocity
profile in the far field:

lim q = u.—y. 12)

X —tee

The motion of passive scalars is governed by the
Hamiltonjan dynamical system:

., _ 09 . _ =0
X= 3y y=-=5 (13)
where the streamfunction ' represents the Hamilton
function and the scalar coordinates (x, y) are canonical

variables. The streamfunction W is related to the
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vorticity ® by the linear Poisson equation:

To solve the problem we developed an analyti-
cal procedure based on conformal mapping, which
is inspired by the method described by Tsien
(1943).

Let us assume

Y=Y, + Y, (15)
where the streamfunction ¥, is relevant to the shear

flow u=-wy, ie.

Yo = 0y’ (16)

and the function \, is harmonic in the flow region.
Since

Vi, = -0 17
and
Vi, =0 (18)

equation (14) is satisfied. However, the problem has
been reduced to the determination of the harmonic
streamfunction y, which ensures the fulfillment of
the boundary conditions, that is, the far field
velocity equal to (u.-y) and the impermeability
of the wall. Therefore, we seek a complex potential
®, whose imaginary part is .

I define the flow regions in the z-plane as the
conformal representation of the half-plane 3({) >0
according to the mappings:

CZ
zZ= C + m (19)
and
z=J(+16)’—1 + log({ +i8 + J(C +18)*=1)
(20)

which are the modified Ringleb mapping (1) and
the Schwartz-Cristoffe]l mapping (2), respectively, where
we introduced the real positive parameter & in order
to smooth the comers (the smaller 8, the sharper
the corner).

The further mapping:

_i-¢
A=2p @1

—

[T

transforms the half-plane 3({)>0 onto the interior
of the unit circle [M=1 in the A-plane. Therefore,
the chain mapping z—{—A maps the physical
boundary of the flow region onto the unit circle in
the A-plane, where A =—1 corresponds to infinity in
the z-plane.

On the physical plane, the shear flow (16) induces
the following velocity component ¥ normal to the
boundary:

¥ = y,sinf ' (22)

where the subscript b denotes boundary, and B=
arg(dz/dl) is the angle between the boundary and
the x-axis.

Therefore, the condition of impermeability for
the boundary in the z-plane is satisfied when the
velocity component normal to the boundary, due to
the complex potential wy, is equal to —V , that is:

-3 d%ﬁe‘" =5 23)

which translates on the A-plane as

m(d—wexj =34z (24)
M=1

dA dn

N =1

As there are no point vortices (they can be added
to the flow later), the complex velocity dwy/dz
must not be singular inside the flow field. Since the
mappings z — A are regular inside the unit circle
IM<1 (A#-1) in the A-plane, then the complex
function dwy/dA must not be singular inside the
unit circle as well, except for the point A =—1 that
corresponds to z = o, .

Therefore we can assume:

d e
E‘%:F(k)+n§(an—1bn)k ! (25)

where F(A) contains the possible singularities located
in A=-1, that is, in general,

F(\) = 3o+ 1) (26)
j=1
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To determine the ¢; coefficients, we recall that the
velocity at infinity (z=9¢), due to the complex
potential w;, is .. Since for the mappings (19) or
(20) the derivative at infinity is

lim—C =1 27

which implies that all the coefficients ¢; for j>2
are null, and that

I determine the coefficient ¢; by considering that
the mass flow Q across the boundary, due to the
shear flow, has to be balanced by the potential flow.
We have

Q=7 -oy g, =211 (30

and also, according to the invariance property of the
complex potential,

—Q :_li}\}:lﬁ =TC, (31)
The function F(A) is then fully determined:

1 Q1

F(;&) = -2iuwm—5;\’—+l

(32)
According to equation (30), the mass flow Q
relevant to the mapping (19) is null, while for the
mapping (20) it is

Q=-3(r’ + 219)

To calculate the second term on the right hand side
of equation (25), we combine equation (25) with
equations (24) and (32) evaluated at JAl =1, that is

A =exp(iv):
dz
7

z (a,cosV + b,sinnv) = —v

n=1

_oldz| . Q
W+ o7
(33)

—93(—2iu,, A QL) =

O+1)} mA+1)"

Since the right hand side of (33) is not singular, the
coefficients a, and b, on the left hand side go to
zero for large n. The Fourier series on the left hand
side can be suitably truncated and the coefficients a,
and b, evaluated numerically. The FFT algorithms
are efficient tools for this purpose.

The complex potential w, is finally obtained by
integrating equation

2iv. Q

=log(A+ 1) + Z & "k“ (34)

n=1

In general, for geometries defined by the mappings
(19) and (20), the flow does not satisfy the Kutta
condition, i.e. it does not separate at the corner. The
rotational flow field exhibits a recirculating bubble,
but the separation point is unphysically located down-
stream from the high curvature comer. To enforce
the Kutta condition, a vortex can be added to the
flow, as has been shown in §2 for a potential flow:
the same considerations on its strength and equilibrium
hold for a shear flow.

By adding a point vortex to the flow, the com-
plex potential becomes

W, 21u.. —%log(k +1)

A+1

= 2, —ibyn o {-¢
+n§TA +2mlog(C C‘g’) (35)

The complete streamfunction, relevant to the sum of
the shear and the potential component of the flow, is

= _%mz +3(w,) (36)

which provides the following flow velocity:

*=—0y + I:F(?») + Z(a —ib)A" ‘}‘”‘

el 7
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The vortex velocity can be obtained as

. . (dw 1
*_ _ awp_ Y.
75 = —0Yyo + llm( 1 2niz—zo) (38)

Z—)ZO

and is governed by a Hamiltonian system as well as
for the potential flow, as discussed in §2:

. _dH _ oH
k=50 Yo=-5m (39)
where the Hamilton function H is:

H=-loy + S[ 2iu., —%log(xn)

2 A+l

+Zaﬂ—‘nﬁx‘"—%t1[logno-10g%} 40)
The strength and location of the vortex is then deter-
mined according to equations (38) and (39), imposing
the flow at rest on the corner z. and the vortex at
its equilibrium location X, = yo = 0. Figure 4 shows
streamlines and velocity vectors for a separated shear
flow for a geometry given by the map (19); the
flow field is characterized by ®w/u.=-10 and Yu.=
—2.243.

The stability of the equilibrium can be inferred
from Fig. 5, which displays the contour levels of
the Hamiltonian of the vortex, namely the possible
trajectoties of the vortex. The equilibrium point,
marked with a square, coincide with an elliptic, i.e.
stable, fixed point in the phase space.

The Unsteady Flow

I examine the Lagrangian transport of passive

Fig. 5. Pattern of the possible trajectories of the vortex. The
equilibrium point is marked with a square.

scalars in the case of unsteady flow. Recalling equa-
tions (13) and (36), the motion is governed by the
system of equations:

X= %W(x,y; Xp,¥o) Y= a%\v(x,y; X0, Yo) (41)

where the streamfunction Wy depends on both the
particle coordinates (x, y) and the vortex location
(X0, yo). For a vortex located at its equilibrium
position (x5, yg), the one-degree of freedom Hamil-
tonian system (41) is autonomous, and hence integrable.
In this case, the phase portrait coincides with the
streamline pattern for the steady flow as shown in
Fg. 4. The phase space is characterized by a streamline
connecting two stagnation points, or according to dyn-
amical system jargon, a heteroclinic orbit connecting
two hyperbolic fixed points. Figure 6a shows this
streamline in the physical z-plane. Such a feature

Fig. 4. Streamlines and velocity vectors for a separated shear flow for the blunt snow cornice.



Dispersion in the Unsteady Separated Flow Past Complex Geometries 521

Fig. 6. (2) The separatrix streamline connecting two fixed points (P, P*) in the unperturbed case; (b) as a consequence of the
perturbation, the streamline splits in two branches which intersect each other: unstable manifold (bold line) and stable manifold

(thin line).

has great relevance because it is capable of triggering
chaotic mixing if the system undergoes a time-dependent
perturbation, as shown below.

If the vortex is displaced from its equilibrium
location (x&, yg) by a small quantity € its trajectory
follows a closed orbit, as shown in Fig. 5. Its peri-
odic motion obeys equations of the form:

Xo = Xo (X6, Y6s s8), Yo = Yo + £(Yo: X0y 5t)  (42)

In this case, equations (41) is no longer autonomous,
because now the streamfunction (36) depends on
time through the time-dependent vortex coordinates
(xo(t), yo(t)). Formally, we can write

W = WX, Y3 X0, ¥0,€) = WX, V3 X0, V)

oy of a\uag)
+ e(aXan + Jys3e + O(z—: ) “43)
and the goveming equations (41) reduce to the time-
dependent perturbation of an integrable Hamiltonian
system:

. _av" . _a(ayar @ag) .
x==5 +88y(8x08£ 3y.0e) T OE)

. _ oy" i(a\yaf a\yag)
Y= 9x o 0X,0€ + dy,0€ +0@E) @

As shown in Fig. 6a, for € =0 the unstable mani-
fold leaving the hyperbolic fixed point P~ joins
smoothly the stable manifold going into the other
fixed point P*, and the heteroclinic orbit of the
unperturbed system is a single line connecting P~
and P*. However, it is well known that €20 dra-
matically affects the phase portrait in that the time
dependence of the system, if not associated to any

kind of symmetry, causes non-integrability (Novikov
and Sedov 1979; Aref, 1983). The stable and
unstable manifolds do not join smoothly but inter-
sect each other transversally forming a paradigmat-
ically chaotic tangle (e.g. Guckenheimer and Holmes,
1983; Tabor, 1989; Wiggins, 1992). Since any in-
tersection point maps into another intersection point,
the number of transverse intersections is infinite,
whereas the distance between intersection points
tends to zero as they approach a hyperbolic fixed
point. At the same time, the system preserves the
area of the lobes embraced by the arcs of the mani-
folds clipped between two intersections. Figure 6b
shows a Poincare’ section of the flow over the
snow cornice, enlightening the scenario of the sta-
ble and unstable manifold intersecting transversally.

The chaotic character of a system can be de-
duced whenever evidence of such transverse cross-
ings is provided. For instance, several authors used
the Melnikov technique (Melnikov, 1963) to detect
analytically the transverse crossings between stable
and unstable manifolds for (time-periodically) per-
turbed integrable systems (e.g. Rom-Kedar et al.,
1990; Zannetti and Franzese, 1994; Del Castillo-
Negrete, 1998 and references therein).

RESULTS

The representation on the transformed {-plane of
a steady shearless flow over a step or a snow cor-
nice is similar in many respects to a vortex pair
flow, except for the differences due to the Routh
correction (6), which affects the vortex velocities.
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Fig. 7. Streamline pattern of a vortex pair flow in the frame
of reference moving with the vortices.

The streamline pattern of a vortex pair flow in the
frame moving with the vortices is shown in Fig. 7,
where we can see the two hyperbolic fixed point
(P, P") connected by heteroclinic orbits. Rom-
Kedar et al. (1990) perturbed the vortex pair by an
external periodic strain-rate field, and studied
extensively the chaotic dynamics of the resulting
Oscillating Vortex Pair flow (OVP). They focused
on the dynamics of the lobes enclosed by the per-
turbed heteroclinic orbits. Rom-Kedar et al. (1990),
and Wiggins (1992), provided valuable tools for a
quantitative evaluation of the mixing process in
terms of the amount of fluid involved and the resi-
dence time of the fluid particles in the chaotic region.

The unsteady flows over complex geometries that
we described in this paper show the same basic
mechanisms of mixing as for the OVP flow.

Besides the fluid permanently entrained by the
vortex, and the fluid flowing unperturbed down-
stream, the scenario is enriched by fluid particles
temporarily trapped by the vortex and then detrained,
before flowing downstream. This phenomenon, known
as transient chaos, was acknowledged and investi-
gated a few years ago by Pentek et al. (1995) in
the context of the advection problem of passive
tracers in the velocity field of vortex pairs.

I focus on the phenomenon of heteroclinic chaos
as a large scale mechanism of intermittent release,
causing intense concentration fluctuation of passive

tracers. The entangling of the heteroclinic orbits is
a consequence of the unsteadiness of the recirculat-
ing region and, in particular, of the oscillatory motion
of the reattachment location. This oscillation has
been observed in large eddy simulations as well as in
two and three-dimensional direct numerical simula-
tion of high Reynolds number flows over a back-
ward-facing step (Driver et al., 1983, 1987; Le et
al., 1997 and references therein). The periodic
movement of the reattachment location is caused
by the formation and detachment from the step of
large-scale coherent vortical structures. The discrete
vortex method that we applied to the snow cormice
reproduces the same phenomena: Fig. 3a shows the
fluctuations of the total circulation during the tran-
sient, due to the periodic detachment of clusters of
vortices from the recirculating region. The phenom-
enon is evident during the transient because no per-
turbations were introduced in this simulation, but a
natural oscillation of the centre of vorticity takes
place during the transient, as shown in Fig. 3b. The
transient is characterized by the roll-up of the vor-
tex sheet which is shed into the fluid (see Fig. 2),
consistently with others discrete vortex models of
reattached flows (Cortelezzi et al., 1994) and DNS
of the backward-facing step flow (Le et al., 1997).

As shown below, the unsteady single vortex model
is able to display the periodic detachment of coher-
ent structures, even though these structures are not
vortices but the fluid particles trapped into the
lobes of perturbed heteroclinic orbits.

I present the results of two simulations showing
the intermittent release of tracers. The first refers to
the snow cornice generated by the modified Ring-
leb trasformation (19). We perturbed the flow by
displacing the vortex by €=0.005 and letting it
move freely along its periodic orbit. Passive trac-
ers are released at a constant rate from a point
upstream of the edge and close to the wall; their
time evolution is described by integrating the gov-
erning equations (41) by means of a fourth-order
Runge-Kutta algorithm.

The time evolution of the plume is obtained by
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Fig. 8. Distribution of scalars in the field and concentration time series sampled in the volume marked by the shaded rectangu-
lar area downstream, at two different times. The concentration time series is plotted in the upper portion of each frame. The sys-
tem is periodically perturbed by the vortex autonomously oscillating around its equilibrium location.

‘recording the position of the tracers at fixed time
intervals. Also, we record the scalar concentration,
averaged over a small control volume, as a func-
tion of time. Figure 8 shows the distribution of sca-
lars in the field and their concentration in a sampling
volume, marked by a shaded rectangular area, at
four different times. The sampling volume is down-
stream. The periodic character of the concentration
is demonstrated by its time history, plotted in the

upper portion of each frame. The wave form of the
concentration were found dependent on the loca-
tion of the monitoring point.

A second example of intermittent release is given
by the simulation performed for the geometry ob-
tained by the modified Schwartz-Christoffel map-
ping (20), i.e. the backward-facing step with smoothed
comer. The unsteadiness of the flow is simulated
by imposing a random perturbation with zero mean
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Fig. 9. Distribution of scalars in the field and concentration time series sampled in the volume marked by the shaded rectangu-
lar area downstream, at four different times. The concentration time series is plotted in the upper portion of each frame. A ran-

dom perturbation is imposed to the vortex equilibrium location.
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on the position of the vortex in equilibrium. Again,
the concentration at a point downstream as a func-
tion of time in Fig. 9 illustrates the intermittent for-
mation of lobes with high density of tracers which
are responsible for the concentration fluctuations.
Because of the random nature of the perturbation,
the concentration is not periodic in time.

CONCLUSIONS

This study has examined the effects of the un-
steadiness of reattached flows on the large-scale
dynamics of dispersion of passive scalars. I consid-
ered the two cases of flow past a snow cornice and
a backward-facing step, and we used point-vortex
models to simulate unsteady separated shear flows.
A new technique has been described to determine
the streamfunction in a field of constant vorticity.

A rotational flow over the above geometries re-
pfoduces the separation, even though the location
of the separation point must be corrected by add-
ing a point vortex to the flow, in order to have sep-
aration at the point of maximum curvature. The
classical Ringleb mapping for snow cornices, and a
Schwartz-Christoffel mapping for step flows have
been modified by smoothing the comers. Such
modification is necessary to introduce the unsteadi-
ness of the recirculating bubble, in that the separa-
tion point is allowed to move around the point of
maximum curvature, while having the flow still
satisfying an unsteady Kutta condition.

The simulation performed for the snow comice by
a more sophisticated multiple-vortex model detected
the oscillation of the center of vorticity, thus show-
ing that the oscillatory motion of the reattachment
point is associated with the unsteadiness of the
recirculating bubble. The same kind of unsteadi-
ness was imposed in the simulation by the simpler
single-vortex model, by perturbing the equilibrium
position of the vortex. As the multiple-vortex simu-
lation shows, the flow is characterized by a peri-
odic release of clusters of vortices from the recir-
culating region behind the crest, in agreement with

the direct numerical simulations of the backward-
facing step of Le et al. (1997). The same mecha-
nism of releasing vorticity holds for passive tracers.

Two different perturbations were applied to the
system: a periodic, natural perturbation obtained by
displacing the vortex from its equilibrium location,
and a random motion with zero mean imposed on
the vortex in equilibrium. The scalar concentration
averaged over small control volumes was calculated
as a function of time. For the case of periodic vor-
tex motion, our model detects the intermittent
release of blobs of tracers with the same period as
the movement of the reattachment location (i.e. the
same period as the vortex motion). For the case of
random oscillation of the recirculating bubble, the
release of coherent structures of tracers was still
observed, although the wave form of the concentra-
tion is not longer periodic.

Intermittent dispersion is associated with the
phase-space lobe dynamics (Rom-Kedar et al., 1990;
Wiggins, 1992), which is an intrinsically intermit-
tent phenomenon. Since very small perturbations
are sufficient to start the above large-scale phenom-
enon, we expect intense concentration fluctuations
to appear downstream whenever a flow undergoes
separation and reattachment.
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Appendix A

The Hamiltonian of a vortex

The Green function G, 1; &, 1) for a flow
region R confined by a line C that extends to infin-
ity is defined as

G, 1; &, no) =&, n; &, Mo)

+ 2l0g.JE—E) + (-no)’

where g€, n; &, Mo) is such that GE&, n; &, Mo)
=0 on C, and is harmonic with respect to (&, m)
on R. Moreover, the reciprocity property of the
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Green functions, G, M; &, No) =G, Mo; €, M),
leads to the relationships:

] . oy O )
a_gog(&o’no, EoMo) = Zgglgoa—éog(&,n, EoMo)

a;?]og@o,no; EMo) = zgi_)ncloa—?]‘og(gam Emo)  (45)

The streamfunction W&, v; &, Mo) due to a free
vortex located in { =, must satisfy the boundary
condition y = const on C, and has to be harmonic
in the whole region except at {,, where it behaves
as (y/2n)10gj(§—§0)2+(n—no)z. Therefore, the
streamfunction y is related to the Green function
by:

W& M; &, o) = Wi, M) +1GE, M; &, Mo)  (46)

where Y is the streamfunction of other flows pos-
sibly superimposed on the vortex.

A vortex does not induce velocity on itself. There-
fore, it moves as a particle in the flow field from
which the vortex induction has been removed. We
can calculate the complex conjugate velocity of a

vortex as:
do v
CO—QO lno—hm(dc 2TEIC_, CO)
oy, awl) (a )
= (57 + 1%, o TG i) 47

where ® is the complex potential. According to
equations (45), the velocity of a vortex can be
expressed as:

0= gn— + la_EJO (48)
where the Hamiltonian H' is given by
H =y, +1g 49)

For instance, in our case the curve C and the flow
region R are the real axis and the positive im-
aginary half-plane, respectively, and the flow is the
superimposition of a uniform flow and a vortex.
Therefore the vortex Hamiltonian H' (49) results:

H' = q.n, + Zlogn, (50)

The Routh Rule

‘When the motion of a vortex is conformally mapped
onto the physical z-plane, its Hamiltonian has to be
corrected according to the so-called Routh rule
(Routh, 1881). The following is a brief account of
its derivation.

The complex conjugate velocity of a vortex in
the z-plane is

- dm_lL)
2= %o~ Iyo_zh—>nz10(dz 2miz—z 1)

This can be written as:

#% = lim (‘_‘E’_i—l )dC

z92Z, dc 27‘CIC go dz
e 1 1
27t1 (=L )dz Z-12, (52)
0 dC
that is
d220
Z'*_ *dgo Y dCD
0~ 04z, 2n12(d20)
dC,
«dCo 7y d (dzo)
= 8o, amaz, °8\at, (53)
Recalling equations (48), it follows that
= oH'9&, +oH JH' ano + (BH &, N _aﬂ'%)
a&oa}’o dNedYo aéoa’(o dNedxo
Y( J dz| , : 9 dz )
+ L =—1 o+ is—1 0
41\ dy, 83 ag, 9% CHar g,
[ ( dz
(ayo + laxo)(H log 0) (54)
and finally
H=H + 710 dzg 55
aroelgr (55)

The relationship (49) between vortex Hamiltonian
and Green function for a bounded simply connected
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region was first given by Masotti (1931) (but see
also Caldonazzo, 1931; Pelosi, 1926). Successively,
Lin (1941) extended the Masotti theory to multiply
connected domains containing more than one vortex.
Surprisingly, Ringleb (1961) seems to have been

unaware of the previous studies, as he deduced in-
dependently the Routh rule. However, he considered
that it was only applicable for mapping based on
many-valued functions.
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