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ABSTRACT. The integral Hellmann-Feynman Theorem of Parr is generalized to give a full
significance to the off-diagonal form, and certain aspects of it are discussed. By use of the genera-
lized form of the theorem, effects of configuration interaction to the crystal field theory are exami-
ned, taking perturbation energies of all order collectively into account. Thus, it is shown that there
do not exist, especially when the field is strong, the radial integral which is common to all states
characterized by I, S and m, and could be parametrized. If, however, one restricts the perturbing
excited states only to those angularly undistorted and radially equally distorted, there results simple
scaling of the crystal field parameter 10 Dg and Condon-Slater parameter F» defined within the
framework of the classical crystal field theory.

transition metals and rare earths. The theory®™®

I. INTRODUCTION
based on the assumption that the substituted ion

The crystal field theory of Bethe' and Van
Vleck? has played the pioneering role in expla-
ining the energy states of complexes of the

feels a purely electrostatic field with point
group symmetry of the lattice site it occupies.
In practice, the theory employes semiempirical
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method in which certain integrals are paramet-
rized and determined by fitting the observed
transitions®~1°,

Attempts to calculate the magnitude of the
crystal field parameters within the actual frame-
work, which is essentially based on the first
order perturbation theory from the degenerate
zero order coafiguration, have led to the results
that disagree considerbly with the empirically
deduced values'’. Naturally and quite logically,
the extensions of the theoretical framework to
the second order have been tried with configu-
ration interaction of excited states being taken

into account. Perhaps, the work of Rajnak and
Wybourne'?1? is the most typical one this line.
They have examined the effects of configuration
interaction, by introducing additional effective
two-and three-body interaction terms to the
Hamiltonian. By use of the second order pertu-
rbation scheme, they have concluded that, in
spite of that the traditional theory was develo-
ped without including the possibility of excited
configuration interaction, many of its effects are
autometically absorbed when the radial integrals
appearing in crystal field theory are treated as
parameters to be determined from the experi-
mental data,

Now then, a legitimate next guestion is what
happens if one includes fully the sum of all
orders of the perturbations in configuration
interaction. In the usual perturbation scheme,
when the perturbed functions are obtained in
the actual framework of the theory, it is har-
dly possible even to express in meaningful form.
Rajnak himself noted “in going to higher orders
of perturbation, do higher order n-body interac-
tions arise” On the other hand, if one tries to
seek the solution via variational scheme, one is
confronted with other sort of difficulties. That
is, the difference of the expectation values,
which is nothing but the perturbation energy,
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does not depend linearly on the excited configu-
rations which one mixes into the trial functions.
Thus it lets.one be unable to visualize the effe-
cts of a specific configuration to the total pertu-
rhation energy. One will be very happy if there
exists such a formula that i) it gives the sum
of the perturbation energies of all orders if one
uses exact perturbed wave functions, and ii) it
conserves same form, as long as one uses pro-
perly optimized initial (unperturbed) and final
(perturbed) wave functions, and equals to the
difference of the expectation values of initial
and final states, and iii) the form of the for-
mula facilitates to visualize the contribution of
each component.

The very formula, having those traits which
one hopes it to have, is the Generalized Integ-
ral Hellmann-Feynman Formula, is going to Le
developed in the present paper.

In section II, we develop the formula just
stated and discuss the characteristics of it, In
the section III, we choose the system of (3d)?
configuration placed in the field of octahedral
symmetry as model case, and discuss the effects
on the crystal
field parameter and Condon-Slater integrals,
We exclude

the spin dependent interaction since we are not

of the configuration interaction,
and on the classical theory itself.

dealing with any real system presently.

II. GENERALIZED INTEGRAL HELLMANN
~FEYNMAN THEORM

Given the Schrodinger equations
Hgy=E ¢y (1)
Hfy=Egfy, H=H°+4H 2)

where 4H is a perturbation and ¢y—¢;, E—
E;° as AH-0, one can immediately write down

{Ga| H* + AH | ¢y = Eldalghp (3)
or

$Bel dH|fp = (E,— Es°) il o> 4)
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Thus one has

E-pe="8HI¢0 i 44550 (5)
{baldr

which is the Generalized Integral Hellmann-

Feynman Theorem (GIHF). With %:=l, there

results

AE{E (E,[ - E‘Q ) == —-—<¢zlﬁfii§{|>¢£> (6)

which is the ordinary Integral Hellmann-Feyn-
man Theorem (IHF)!~16 and has been known
for some times.

Especially, if the zero order level has a de-
generacy, GIHF takes a peculiar form:

_ (sl AH dp
AE;= <owlbr
with {g:|¢)> %0, EP=ES ¢

In other word, one can take an arbitrary zero
order function ¢ as long as EP=E”°, to
obtain the sum of the perturbation energies of
all order, AE,=E;—E;.

Since the derivation of Eq. (5) is based on
the Schrédinger equations (1) and (2), with
arbitrary approximation fy (for ¢;) and g; (for
¢p), it does not follow that

AE;E <g"IHIgI> —_ <fi|H°If}>

{&iler alfe
:_Lf&e}ff;.ri) 2 with {filgp =0 t))

However, it has been shown that Eq. (6) does
hold indeed when both f; (for ¢;) and g; (for
¢1) are composed of a common basis set {com-
plete or limited)}!®, and the expectation values
of the respective Hamiltonian are fully minimi.
zed by solving the secular equations, It will be
shown below that the same is true for the ge-
neralized form. Suppose that one expand f=
(fv fo ) and g=(g1, g2, *+-) with a common
basis set §=(&;, £, +++) such that

f=éa, ata=1 )]

g=Ep, f*p=1 (10)
where a and 8 are chosen to satisfy

a*‘H“"o:=H°f= {5,';H;;°f} (11)

B*HEg=Hi={6;;Hs;;} (12).

HE={GH 1ED), HYY={{filH°| £}
H={EHISDY, He={(g:|Hlgj) 13y

Then immediately it follows that

a*Héip=atSHs (14

atHp=H /atg (15)
Subtracting Eq. (15) from Eg. (14}, one obtains

atdHB=qtSHY— Hfa*f (16)
where

AH=({g:| 4H &} = HE—HO¢ an
The kI element of Eq. (16) is

{frldH|gp =g\ Hlgr —{F HO £}
{file a®

which is equivalent to Eq. (14). Thus with
AE=E,—EP, B'={g|H\gD,

Eo={ fiI B° | f) (19)
One has
E—Ep :i%%ill%{)&)_ with {filgp x0 (20)
_ {fildH|gp
4E= {Frlgw

with {filgp =0, EL=E;° (21)

Since one is going to use very this form of
GIHF in the following section, it may be
wosthwhile to give a few comments on Eq.
{21). Suppose, f is ¢ itself, which is the exact
solution of the Schrédinger equation (1). That
is, « is the unit matrix. Then, taking
f=¢, g=o¢8 (22)
it follows from Eq. (21) that
AE;={¢;| 4H| Ziiaf =<l 4H| Ei‘}se?’xzi)
with 8y=0 E°=FE° (23)
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with
v =Bufu" (24)

According to Eq. (23), the total perturbation
energy 4E; is linear with respect to each com.
ponent ¢;. The ordinary variational treatment,
where 4E; is computed in terms of the differe-
nce of the two expectation values, never shows
such a linear dependence.

Furthermore, if one combines Eq. {16) with
Eq. (22), there results

AH$8=pHe— H°%p (25)
where

AH={(¢;| 4H|$;7} (26)

HY%={{g;| H° |$;D} = {6:,E;°} (27)

Then if # belongs to the degenerate space (1<
k<gs, E°=Eg,), then one obtains the secular
equation

:_Z: {4 H 0, (AED) fu=0 1<k<gs (28)

of which eigenvalues are 4E;=E;—E ;°. When
4H? is a factored block form due to symmetry
consideration, so is the matrix 8. It means that
only those ¢;/s, which have nonvanishing
4H,#, participates in g; via Eq. (22), as well as

in 4 E;.

III. EFFECTS of CONFIGURATION INTEG-
RATION on CRYSTAL FIELD THEORY

Presently, our system of interest* is an atom,
of which valence shell configuration is (34)2,
with the effective nuclear charge Z acting on
the two electrons, and is placed in the field of
octahedral symmetry, V°.

Voot (1) +°(2) (299
=00 o (30)**

V=R (1)a (0,9), 6" (0,9) = Ye* (0.9) (31)

PIZRUEO, ), 00, 9)=

ZYE0,0)+ /5 (¥t0,0) + Y16, 9)
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(32)

The Hamiltonian is, neglecting spin-dependent
interaction, given by

lfar=ﬂ"+vf’w'-}12 (33>
H=hr°(1) +A°(2) (34)
o_loo_Z .
O (35):

in atomic unit,
The one electron basis are (symmetry adap-
ted) solutions of the Schrédinger equatons,

B Pa=e’ P (36>
where ¢ and % stand for

3‘=1, 2, 3. 4, 51 Gl 7’ 81 9| 10

#u 2 v P aa bd ¢ ¢

&g tog
k=1, 2, 3, 4, 5,-evereees
3d 4d 5d 5g 6d--++++-

For example ¢y, ; is 54 orbital of f-spin with
v-type ¢, symmetry of the octahedral group.

In constructing the two electron basis set, we
take only the one-electron excitation into acco-
unt. One reason for this is that the two elect-
ron excitation costs much higher energy than
the one electron excitation in the hydrogenic:
atom. The two electron primitive functions,
which behave exactly as the zero order functi-
ons ¢; in the octahedral field are given by

F(Set=Na{ F6aD) 60(2) 1+

9D (2) 1} (>5) 37
with
1
— f
Ny= "‘;_2 or k31 (38)
5 for k=1

*One can extend 1o (3d)" system without any essen-
tial feature of the formalism.

**Although one may add the terms of Y/(8, @) with.
{>4, they are neglected because the addition does.
not affect the reasoning given here at all,
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.S, stands for z-component of the total spin,
-and cp means p-th function of c-configuration
{c=1, 2, 3for e et t' and #5,°). The
choice of the primitive functions as Eq. (37)
facilitates the symmetry adaptation. That is,
the transformation matrix is common to all

values of &:
DT, 5, 5,) gt = S F(S) o AT, 8, S epen (39)
¥

where I, S stand for irreducible representation
and total spin, and () means ¢-th component
of E-th basis vector (excitation to k-th level
from k=1, 37) with ¢-confguration (¢=1, 2,
3 for ¢, e ts", and #3,%). On the V° poten-
tial, ®,,Fs are diagonal with respect to cq, but

mix into each other through % On the —;rl—
12

potential, they arz diagonal only with respect
0 q.
The completely diagonal bases on the total

Hamiltonian are then constructed by

{5 812}
O, 5, 83m= 2 9,5, 8:)o

B(Fu S! S.“.')cfj mq (40)
((f.5.51)
TS, Sng= 5 SO S50
G(rv S; Sz)cq:mq (41)

where @(F, S, 8:)mg is for without (excited)
and &L, 8,8 me 18
for with (excited) configuration interaction. @,

configuration interaction,
(hereafter for brevity, the arguments in the
parenthesis are omitted when there is no possi-
bility of confusion) is the one which is used in
the most naive form of the crystal field theory,
in strong field case. Subetituting @.f of Eq.
(39) into Eqs. (40) and (41}, one obtains

3

~

{

8.5
q)nq:— LE .{::Fqbl-d (r! S- Sz)cp ma {4‘2}
and
- G O]
§oug= ; ; DF LM, S, Sedep v (43)

%
where

A(ra Sa Sz)rp:quA (r! S> Sz)r:p:cq
B(‘p! S, S.‘c)cq‘mq (41')

and

-Q(P» S9 S:)(pquEA (‘": S; S:) cp.cg
G(r9 Sa S:‘:) tqrrngk (4‘5)

In practice, the Acpme and Q.pn* are obtained
by solving the respective secular equations.
According to the statement associated with
Eq. (7), one can select any F.p', provided
that the correponding A.p...-q (and hence Ayrpr g
and Q. p-m) does not vanish, to express the
perturbation energies by use of GIHF. That is,

EOT, S, m)y=(D,,,! V°+;1l—é B>

= <¢mg 1 H] ¢mq> - <¢mq |H° I¢mq>
:<¢mq1H|@mq>_‘<Fc’p’1IH° IF.:‘p’I>

= CFept | V47 80> (FopH B>~

(46)
Similariy

AEW, S, M) =T g | HIE ) — Bg | HC | D)
:<armq|H!wmq>_' <Fc'p‘1]H0lFr'p’l>

= Fep | VoA (U B [T

(47

The matrix elements with respect to the F,*s
are

{F,,:;,—I | Frp}> :5“'5”'5&1 (48

Fop | VO Foph> = 8.0 85p Ny i [2° | Siahin +
Gpay +{Ppi | 0@ +o, ) (49)

Fopllns | Ft =Nikhin(1) $52(2)

~i2(1) 612 1 (60 (D2

12

+¢u (1) (2)> (50)

where one may recollect that i<(j, and §;.0;;
corresponds to .8y because there is one-to-
one corvespondence between cp and ij by Eg.
{37). Substituting Eqs. (42) and (43) into Egs.
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(46) and (47) respectively, and using the in-
tegrals of Eqs. (48), (49) and (50), one obh-
tains, with little manipulation,

x )

EO(, S, m)=C{Fup| V°|Fer') +

»

( Fc')'l]l | Fql) G’:ﬂ!’ — <95,-r1|v° l 95‘_1)

s)(c)

+<{d; 1|ﬂ“f¢y1)+ E E(¢£1¢;1 pidinl

i¢.1¢jl> Aectma ' (51)
rimg
and
AB= (1,5, m) = FFep | VO | Fopt Sermt,
=.° :mq
Y SRR By Setat
c?"ﬂf

={i1lo7 | gen +§2¢'£'%*uk> F<inle|gm
r.8.82) (e

t §¢j'iﬂ°m’> i X ’ (g: {Pirdin '(_‘,?'{'@j'l i

%2 i+ ?‘5; ! ( :x-a: f’jiﬂm‘)

+ (Zéi!ﬂ:u ) ¢JI> c’ mql (52)

’VW

where
pc-;,kE.p(r, S, S t’m‘E

Ngc ‘Q m-ﬂ' (53)

G: qrmql

ﬂmiEﬂ(‘pv S, S, mi_—- ngtp ﬂ‘a‘
ep mq

= NGy -m_w__
Gcr mql

N, ch'P‘ -m-fi
Q.

1
Pimg

(54)

and F,,! is chosen in such a way that the
corresponding and A 4r.e do not vanish.

The striking resemblance of the two fomulae,
Egs. (51) and (52) is only superficial one,
since g% does depend on 7', S and m. The
dependence actually prohibits a unique definition
of the crystal field parameter 10 Dg, as earlier
For the
which is the (first order)
energy of strong field case in the classical field

worker noted by different approach!?.
comparison of EV,

theory, with 4E, perhaps one had better reg-
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roup the right side of Ea. (52):

BE(T, S, m) = {{Pin|v° lgor> +(Pjn|0° Ly 1)}
+ s [° 1 E@riﬂm*) +<{pylv°|

S)()

Zgntea) + 5 Bud—dpndinl
L 1gup-Sermt U5 Bipgin
'—95.;’195.-11 | E(¢ﬁ¢;£+¢jk¢j1)#m 5

%f:ﬁl—}={V(I)}+{V(]I)}
+(LCD} + {LaD) (55)

with obvious definitions for V{(I), V({I), L
(1) and L(II). What one experimentally ob-
serves is not the JE itself but the difference of
AE in the two states {zero order energy is
degenerate!).

EW of Eq. (51) corresponds to V(I)+L
(1), except with minor difference in coeffici-
ents included in L(I), In a strong field, by
definition, V(I)}+ V{II) is larger than L(I)
4+ L(II). Especially when the field gets strong
enough, even V(II) itself grows so large that
one should not simply neglect it, as E® does.
The trouble is, this very E® is supposed to be
used in a strong field, according to the classical
crystal field theory.

As one sees from the dependence of g % on
I', 8, and m, there is no such thing, especia-
lly in a strong field, as 10 Dg which is com-
mon to all the states characterized by /', § and
m. In a weak field, however, one may give a
because in this
case V(ID) is the least influential term in the
expression of 4E.

But, on the other hand, in the weak field,
L(1)+LD) is larger than V(I)+V{ID), by
definition. Thus one has no rteason to simply
neglect L(II) as the conventional crystal field
theory does. In fact L(II) is the one which
modifies the Condon-Slater Integral, F*

But, still the 10 Dg and F*’ s have been used

significance to the parameter,
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as empirical parameters, and by doing so, cry-
stal field theory explained and clarified energy
states of so many complexes, How should we
explain? The answer for this is to give a new
(though probably approximate) theoretical exp-
ression which is common to all the states cha-
racterized by I, S and m.

Suppose up=R;(r)wp {0, 9) and a;=Ri(r)ay,
(8, ¢) which correspond to ¢y, ; and és, # Then
one-electron total perturbation energies due to

o? may be written as
A=l o® §um><a.11 eyt Dupe ™!
=<y [0°° |2y + <y | %4 [u1+§2um> (56)
e, =<ay|vPap) +<{ar{v™] ay +‘Z___Igrn9;> (57)
where 1; and B correspond to p.,* in Eq.
(52). Since (n{e°°%) and {@1|v°°|a are

identical (it inffuences only on the “center of
gravity” on splitting), one has

ey dey= Ry R R Konal ooy
~(agglo™ |} £ DR R R

Ko™ oppvs— (o, |0 g2 B (58)
2deut34e,=5X Ry R°° | Ry + S (R R**| Ry

{201 | 6*opve + 3{w1e | %% |04 B} (59)
Now, one assumes that

vi=F=rs for all I', 8, m {60)
and restricts £ to nd functions so that

B=1, 2, 3, 5, eeeens
3d 4d 54 6d (61}

The assumption means to allow equivalent ra-
dial distortion to ftve 34 orbitals and no angular
distortion. Then from Egs. (58) and (59)

o= e, =Ry R Ryt SRard 62)
24e,+345,=5¢(R|R°°|RD (63)

where 7 is a simple constant, Taking

dey— de,=10 D, (64)

one obtains, from Eqs. (62) and (63),

s, =6 D +<{R[R°°|Rp (65)
deg= =4 Dy t-<{Ry | R°° | Ry (66)

where (R;|R°°{R;) is the “center of gravity”.

From Eqs. (51) and (52), with the same
assumption as above, one obtains typical elect-
ron interaction integrals such as

G (Da @R Bi(Da@)

12

and

)

mDa@ | 1bWa@ + 5
(Ve (@) +6 1)@ re

which one is going to compare. If one factors

the common angular integrals out, there result
Kl
RIDR) [ IR RDY=F" (67)

RUDRE) |55 IRDRD) + S,
{RIMDR:2)+ROR @) ro=F" (68)
where F" of Eq (67) is the Condon-Slater in-

tegral if a trivial constant multiplied to it. As
one sees now that “the free ion values, F"
(given by Eq. (67))" should be not adequate
in a weak field, and the empirical parameters
one uses are, in fact, F» of Eq. (68).

In short, the introduction of the excited con-
figuration interaction to crystal field theory, in
limited sense .of equal radial distortion and no
angular distortion, leads to the simple scaling
of classical crystal field parameter 10 Dg and
F», Condon-Slater parameters,

IV. CONCLUSION

In the present paper the Integral Hellmann-
Feynman Theorem is generalized to give a full
significance to the off-diagonal form, placing
an emphasis on degenerate case. The generali-
zed theorem is then successfully applied to see

Journal of the Korean Chemical Saciety
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the effects of configuration interaction on the
crystal field theory, It is shown that the con-
tributions of excited states to the perturbed
states of (34)? configuration via the crystal field
V® and 1/r;, are linear and extents of contri-
butions are different from states to states when
the perturbation energies of all order are colle-
ctively taken into account. Thus there simply
do not exist radial integrals which are common
to all states characterized by 7, S and m, and
could be perametrized. However if one allows
only angularly undistorted and radially equally
distorted excited configurations to get mixed in,
then there result radial integrals common to all
states. It means the parameters of the traditio-
nal crystal field theory, such as 10 Dg and F*,
automatically include, when they are replaced
by empirical data, some of the effects of confi-
guration interaction.
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