• Title/Summary/Keyword: 섬유복합체

Search Result 401, Processing Time 0.032 seconds

Finite Element Analysis of Thermally-Induced Deformation in SMC Compression Molding (SMC 압축성형공정에서의 열변형에 관한 유한요소해석)

  • Lee, Jae-Hyoung;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.154-163
    • /
    • 1997
  • Thermally-induced deformation in SMC(Sheet Molding Compound) products is analyzed using three dimensional finite element method. Planar fiber orientation, which causes the anisotropic material properties, is calculated through the flow analysis during the compression stage of the mold. Also curing process is analyzed to predict temperature profile which has significant effects on warpage of SMC products. Through the developed procedure, effects of various process conditions such as charge location, mold temperature, fiber contents, and fiber orientations on deformation of final products are studied. and processing strategies are proposed to reduce the warpage and the shrinkage.

An Experimental study on the Mechanical Properies of Fiber Reinforced Cement Composites Utilizing y-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 가학적 특성에 관한 실험적 연구(I ))

  • 박승범;윤의식;조청위
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.93-98
    • /
    • 1993
  • In order to discuss the mechanical properties of fiber reinforced composites with fly ash, lime, gypsum and polymer emulsion-Stylene Butadiene Rubber Latex (SBR) , experimental studies on FRC were carried out. The kinds of fiber used in FRC are PAN-dervied and Pitch-derived carbon fiver, alkali-resistance glass fiber. As a test results, the flexural strength and tougthness of fiber reinforced fly ash. lime.gypsum cement composites are remarkably increased by fiber contents ,but compressive strength of the composites are influenced by kinds of fiber more than by fiber contents. Also, addition of a polymer emulsion (SBR) to the composites decreased the bulk specific gravity, but compressive and flexural strengths, toughness of the composites are not influenced by it, are considerably improved by increasing fiber contents.

  • PDF

Quantitative Analysis of Crack Patterns of Fiber Reinforced Cement Composites based on Fractal (프랙탈 이론에 기초한 섬유보강시멘트 복합체의 균열패턴의 정량분석)

  • 원종필;김성애
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.333-338
    • /
    • 2001
  • Fractal geometry is a non-Euclidean geometry which has been developed to quantitative analysis irregular or fractional shapes. Fractal dimension of irregular surface has fractal values ranging from 2 to 3 and of irregular line profile has fractal values ranging from 1 to 2. In this paper, quantitative analysis of crack growth patterns during the fracture processing of fiber-reinforced cement composites based on fractal geometry. The fracture behaviors of fiber reinforced mortar beams subjected to three-point loading in flexure. The beams all had a single notch depth, but varing volume fractions of polypropylene, cellulose fibers. The crack growth behaviors, as observed through the image processing system, and the box counting method was used to determine the fractal dimension, Df. The results showed that the linear correlation exists between fractal dimension and fracture energy of the fiber reinforced cement mortar.

  • PDF

A Study on the Tensile Strength of Glass Woven Fiber Reinforced PET Composites (직조유리섬유강화 PET수지 복합체의 인장특성에 관한 연구)

  • 김홍건;최창용
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • Tensile strength of the woven glass fiber reinforced PET (Poly-Ethylene-Terephthalate) matrix composite manufactured by rapid press consolidation technique was investigated and evaluated. During pre-heating, consolidation and solidification stages, the optimal manufacturing conditions for this composite were discussed based on the void content and tensile properties depending on vacuum condition. It is found that the effect of vacuum condition during preheating gives a substantial difference on the strength as well as microstructure. It is also found that the failure micromechanism shows several energy absorption processes enhancing fracture toughness.

A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구)

  • 박승범;윤의식;차종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF

Mixing and Compressive Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 비빔 및 압축강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.28-31
    • /
    • 2004
  • This paper discusses the role of micro and macrofibers in the workability, compressive strength, and failure of cementitious composites. Workability(flow), compressive strength, splitting strength and fracture mechanism of hybrid fiber reinforced cement composites(HFRCC) have been investigated by means of Korean Standard (KS). The specific blend pursued in this investigation is a combination of polyvinyl alcohol(PVA) and steel cord. It was demonstrated that a hybrid combination of steel and PVA enhances fiber dispersion compared to only steel cord reinforced cement composites and that the brittle and wide cracking was much reduced in HFRCC as expected because in the matrix containing the PVA fiber around the steel cord, a multiple microcracking occurred and the steel cord could sufficiently work for bridging the cracked surface.

  • PDF

The effect of material factors on the compressive strength of ultra-high strength Steel Fiber Reinforced Cementitious Composites (재료요인이 초고강도 강섬유 보강 시멘트 복합체의 압축강도에 미치는 영향)

  • Park Jung Jun;Go Gyung Taek;Kang Su Tae;Ryu Gum Sung;Kim Sung Wook;Lee Jang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.288-291
    • /
    • 2004
  • In this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-cementitious ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.18, we could make ultra-high strength SFRCC with compressive strength 180MPa through using of silica fume, quartz sand with below 0.5mm, filling powder and steel fiber.

  • PDF

A Study on Tension Properties on Hybrid Fiber Reinforced Cement-Based Composit (하이브리드 섬유 보강 시멘트 복합체의 인장 특성에 관한 연구)

  • An, Young-Tae;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.340-343
    • /
    • 2004
  • The cement-based composites have been used for construction industry because of their economy, suitability for architecture and structure function, fire resistance, low fee of repair, easiness for acquisition. but the limited strain capacity of these makes them tension-weak, brittle, and considerable notch-sensitive. As one of solution, FRC(fiber reinforced concrete) have been investigated for regulating weakness of the cement-based composites. In these day different fiber types are proposed for better performance such as HFRC(hybrid fiber reinforced concrete). This study shows experimental results to search the ultimate strength, the ultimate mean strain, and the tension toughness of HFRC. The tension toughness is proportional to the amount of steel fiber and carbon fiber. In this experimental program we kept the total of steel fiber and carbon fiber as $1.0\%,\;1.5\%$, respectively.

  • PDF

Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

A Case Report of Intra-articular Bee Venom Pharmacopuncture for Partial Tear of Triangular Fibrocartilage Complex. (삼각 섬유연골 복합체 부분 파열에 대한 관절강내 봉약침 시술 치험 1례)

  • Lee, Kwang-Ho;Ryu, Young-Jin;Sun, Seung-Ho;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 2009
  • Objective: This case was to report a case of Partial Tear of Triangular Fibrocartilage Complex treated by Intra-articular bee venom Pharmacopuncture. Methods: The patient was treated by Intra-articular bee venom Pharmacopuncture. The Effect of Treatment was evaluated by Visual Analog Scale(VAS) and Modified Mayo Wrist Score(Wrist Score). Results & Conclusions: After Treatment, Patient's VAS decreased and Wrist Score increased. For this results, Intra-articular Bee Venom Pharmacopuncture may be effective for Partial Tear of Triangular Fibrocartilage Complex.