• Title/Summary/Keyword: 설계환경

Search Result 16,727, Processing Time 0.045 seconds

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

The Effects of Various Fat Source Feeding on Growth Performance, Carcass Characteristics, Fecal Microflora and Blood Profiles in Broilers (다양한 지방원의 급여가 육계의 생산성, 도체특성, 분내 미생물 조성 및 혈액특성에 미치는 영향)

  • Cho, J.H.;Kwak, Y.C.;Lee, J.H.;Nho, W.G.;Kim, I.H
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.93-103
    • /
    • 2014
  • This experiment was conducted to investigate the effects of different fat source feeding on growth performance, visceral organ weight, meat color, excreta microflora and blood profiles in broilers. A total of 768 1-d-old ROSS 308 broilers (mixed gender) with an initial average body weight of 39.68 ± 0.14 g were randomly allotted to 4 treatments with 12 replicate pens per treatment and 16 broilers per pen for 32 days. Dietary treatments were: 1) SBO, basal diet + 5% soybean oil, 2) PF, basal diet + 5% poultry fat, 3) TAL, basal diet + 5% tallow, and 4) LARD, basal diet + 5% lard. During d 1 to 14, broilers fed TAL diet had a higher (P<0.05) body weight gain (BWG) than broilers fed with PF and LARD diets, moreover, broilers fed TAL diet had a higher (P<0.05) feed intake than broilers fed SBO, PF and LARD diets. Overall (d 0-32), BWG in SBO and TAL treatments was greater (P<0.05) than that in LARD treatment. The meat color a* (redness) of broilers fed with LARD diet was increased (P<0.05) compared with broilers fed with PF and TAL diets. No difference was observed in visceral organ weight of liver, spleen, bursa of Fabricius, breast muscle, abdominal fat, gizzard and excreta concentrations of Lactobacillus and Escherichia coli. The blood LDL cholesterol concentration in TAL treatment was higher (P<0.05) than that in LARD treatment. In conclusion, broilers supplementation with tallow could improve not only the body weight gain and feed intake but also blood LDL cholesterol concentration. Moreover, broiler fed lard could increase a* (radness) of meat color, while the soybean oil supplementation improve body weight gain in broilers.

Behavioral Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 거동 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Jeong, Nam-Soo;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.117-133
    • /
    • 2010
  • A hybrid system of soil-nailing and compression anchor is proposed in this paper; the system is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. After drilling a hole, installing proposed hybrid systems, and filling the hole with grouting material, prestress is applied to the anchor bar to restrict the deformation at the head and/or to prevent shallow slope failures. However, since the elongation rate of PC strand is much larger than that of steel bar, yield at the steel bar will occur much earlier than at the PC strand. It means that the yield load of the hybrid system will be overestimated if we simply add yield loads of the two - anchor bar and PC strands. It might be needed to try to match the yielding time of the two materials by applying the prestress to the anchor bar. It means that the main purpose of applying prestress to the anchor bar should be two-fold: to restrict the deformation at the nail head; and more importantly, to maximize the design load of the hybrid system by utilizing load transfer mechanism that transfers the prestress applied at the tip to the head through anchor bar. In order to study the load transfer mechanism in a systematic way, in-situ pullout tests were performed with the following conditions: soil-nailing only; hybrid system with the variation of prestress stresses from 0 kN to 196 kN. It was found that the prestress applied to the anchor system will induce the compressive stress to the steel bar; it will result in decrease in the slope of load-displacement curve of the steel bar. Then, the elongation at which the steel bar will reach yield stress might become similar to that of PC strands. By taking advantage of prestress to match elongations at yield, the pullout design load of the hybrid system can be increased up to twice that of the soil-nailing system.

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Effect of Organizational Support Perception on Intrinsic Job Motivation : Verification of the Causal Effects of Work-Family Conflict and Work-Family Balance (조직지원인식이 내재적 직무동기에 미치는 영향 : 일-가정 갈등 및 일-가정 균형의 인과관계 효과 검증)

  • Yoo, Joon-soo;Kang, Chang-wan
    • Journal of Venture Innovation
    • /
    • v.6 no.1
    • /
    • pp.181-198
    • /
    • 2023
  • This study aims to analyze the influence of organizational support perception of workers in medical institutions on intrinsic job motivation, and to check whether there is significance in the mediating effect of work-family conflict and work-family balance factors in this process. The results of empirical analysis through the questionnaire are as follows. First, it was confirmed that organizational support recognition had a significant positive effect on work-family balance as well as intrinsic job motivation, and work-family balance had a significant positive effect on intrinsic job motivation. Second, it was confirmed that organizational support recognition had a significant negative effect on work-family conflict, but work-family conflict had no significant influence on intrinsic job motivation. Third, in order to reduce job stress for medical institution workers, it is necessary to reduce job intensity, assign appropriate workload for ability. And in order to improve manpower operation and job efficiency, Job training and staffing in the right place are needed. Fourth, in order to improve positive organizational support perception and intrinsic job motivation, It is necessary to induce long-term service by providing support and institutional devices to increase attachment to the current job and recognize organizational problems as their own problems with various incentive systems. The limitations of this study and future research directions are as follows. First, it is believed that an expanded analysis of medical institution workers nationwide by region, gender, medical institution, academic, and income will not only provide more valuable results, but also evaluate the quality of medical services. Second, it is necessary to reflect the impact of the work-life balance support system on each employee depending on the environmental uncertainty or degree of competition in the hospital to which medical institution workers belong. Third, organizational support perception will be recognized differently depending on organizational culture and organizational type, and organizational size and work characteristics, working years, and work types, so it is necessary to reflect this. Fourth, it is necessary to analyze various new personnel management techniques such as hospital's organizational structure, job design, organizational support method, motivational approach, and personnel evaluation method in line with the recent change in the government's medical institution policy and the global business environment. It is also considered important to analyze by reflecting recent and near future medical trends.

Analyzing the Socio-Ecological System of Bees to Suggest Strategies for Green Space Planning to Promote Urban Beekeeping (꿀벌의 사회생태시스템 분석을 통한 도시 양봉 활성화 녹지 계획 전략 제시)

  • Choi, Hojun;Kim, Min;Chon, Jinhyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.1
    • /
    • pp.46-58
    • /
    • 2024
  • Pollinators are organisms that carry out the pollination process of plants and include Hymenoptera, Lepidoptera, Diptera, and Coleoptera. Among them, bees not only pollinate plants but also improve urban green spaces damaged by land use changes, providing a habitat and food for birds and insects. Today, however, the number of pollinating plants is decreasing due to issues such as early flowering due to climate change, fragmentation of green spaces due to urbanization, and pesticide use, which in turn leads to a decline in bee populations. The decline of bee populations directly translates into problems, such as reduced biodiversity in cities and decreased food production. Urban beekeeping has been proposed as a strategy to address the decline of bee populations. However, there is a problem asurban beekeeping strategies are proposed without considering the complex structure of the socio-ecological system consisting of bees foraging and pollination activities and are therefore unsustainable. Therefore, this study aims to analyze the socio-ecological system of honeybees, which are pollinators, structurally using system thinking and propose a green space planning strategy to revitalize urban beekeeping. For this study, previous studies that centered on the social and ecological system of bees in cities were collected and reviewed to establish the system area and derive the main variables for creating a causal loop diagram. Second, the ecological structure of bees' foraging and pollination activities and the structure of bees' ecological system in the city were analyzed, as was the social-ecological system structure of urban beekeeping by creating an individual causal loop diagram. Finally, the socio-ecological system structure of honey bees was analyzed from a holistic perspective through the creation of an integrated causal loop diagram. Citizen participation programs, local government investment, and the creation of urban parks and green spaces in idle spaces were suggestedas green space planning strategies to revitalize urban beekeeping. The results of this study differ from previous studies in that the ecological structure of bees and the social structure of urban beekeeping were analyzed from a holistic perspective using systems thinking to propose strategies, policy recommendations, and implications for introducing sustainable urban beekeeping.

Development of Plant BIM Library according to Object Geometry and Attribute Information Guidelines (객체 형상 및 속성정보 지침에 따른 수목 BIM 라이브러리 개발)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.51-63
    • /
    • 2024
  • While the government policy to fully adopt BIM in the construction sector is being implemented, the construction and utilization of landscape BIM models are facing challenges due to problems such as limitations in BIM authoring tools, difficulties in modeling natural materials, and a shortage in BIM content including libraries. In particular, plants, fundamental design elements in the field of landscape architecture, must be included in BIM models, yet they are often omitted during the modeling process, or necessary information is not included, which further compromises the quality of the BIM data. This study aimed to contribute to the construction and utilization of landscape BIM models by developing a plant library that complies with BIM standards and is applicable to the landscape industry. The plant library of trees and shrubs was developed in Revit by modeling 3D shapes and collecting attribute items. The geometric information is simplified to express the unique characteristics of each plant species at LOD200, LOD300, and LOD350 levels. The attribute information includes properties on plant species identification, such as species name, specifications, and quantity estimation, as well as ecological attributes and environmental performance information, totaling 24 items. The names of the files were given so that the hierarchy of an object in the landscape field could be revealed and the object name could classify the plant itself. Its usability was examined by building a landscape BIM model of an apartment complex. The result showed that the plant library facilitated the construction process of the landscape BIM model. It was also confirmed that the library was properly operated in the basic utilization of the BIM model, such as 2D documentation, quantity takeoff, and design review. However, the library lacked ground cover, and had limitations in those variables such as the environmental performance of plants because various databases for some materials have not yet been established. Further efforts are needed to develop BIM modeling tools, techniques, and various databases for natural materials. Moreover, entities and systems responsible for creating, managing, distributing, and disseminating BIM libraries must be established.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

The Development and Validation of a Core Competency Scale for Startup Talent : Focusing on ICT Sector Employees (스타트업 핵심인재 역량 척도 개발 및 타당화 : 정보통신기술(ICT)분야 종사자를 대상으로)

  • Han, Chae-yeon;Ha, Gyu-young
    • Journal of Venture Innovation
    • /
    • v.7 no.3
    • /
    • pp.183-228
    • /
    • 2024
  • This study aimed to develop a competency evaluation scale tailored to the specific needs of key talent in the ICT startup sector. Existing competency assessment tools are mostly designed for environments in large corporations or traditional small and medium-sized enterprises, failing to adequately reflect the dynamic requirements of rapidly evolving startups. For startups, where a small number of individuals directly impact company success, key talent is a critical asset. Accordingly, this study sought to create a scale that measures the competencies suited to the challenges and opportunities faced by startups, helping domestic startups establish more effective talent management strategies. The research initially selected 71 items through a literature review and in-depth interviews. Based on expert feedback that emphasized the need for more precise and clear descriptions, the item descriptions were revised, and a total of 65 items were developed through four rounds of content validation. Following preliminary and main surveys, a final set of 58 items was developed. The main survey conducted further factor analysis based on the three broad competency factors?knowledge, skills, and attitude?identified in the preliminary survey. As a result, 10 latent factors emerged: 6 items for task comprehension, 6 items for practical experience (tacit knowledge), 6 items for collaboration, 9 items for management and problem-solving, 9 items for practical skills, 4 items for self-direction, 5 items for goal orientation, 5 items for adaptability, 5 items for relationship orientation, and 3 items for organizational loyalty. The developed scale comprehensively covers the multifaceted nature of competencies, allowing for a thorough evaluation of essential skills such as technical ability, teamwork, innovation, and leadership, which are critical for startups. Therefore, the scale provides a tool that helps startup managers objectively and accurately assess candidates' competencies. It also supports the growth of employees within startups, maximizing the overall organizational performance. By utilizing this tool, startups can build a strong internal talent pool and continuously enhance employees' competencies, thereby strengthening organizational competitiveness. In conclusion, the competency evaluation scale developed in this study is a customized tool that aligns with the characteristics of startups and plays a crucial role in securing sustainable competitiveness in rapidly changing market environments. Additionally, it offers practical guidance to support the successful growth of domestic startups and help them maintain their competitive edge in the market, contributing to the development of the startup ecosystem and the growth of the national economy.