• Title/Summary/Keyword: 선형 알고리즘

Search Result 2,495, Processing Time 0.025 seconds

Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process (비선형 공정을 위한 FCM 클러스터링 알고리즘 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Kang, Hyung-Kil;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.224-231
    • /
    • 2012
  • In this paper, we introduce a fuzzy inference systems based on fuzzy c-means clustering algorithm for fuzzy modeling of nonlinear process. Typically, the generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, the fuzzy rules of fuzzy model are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process.

Speech Dereverberation using Improved Linear Prediction Residual (개선된 선형예측 잔여를 이용한 음성의 잔향음 제거)

  • Park, Chan-Sub;Kim, Ki-Man;Kang, Suk-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1845-1851
    • /
    • 2007
  • Background noise and room reverberation are two causes of degradation in speech in listening situations. Many algorithms developed to enhance reverberant speech. In this paper we propose a dereverberation method for enhancement of speech using modified the linear prediction(LP) residual in reverberant room condition. The proposed dereberberation method based on the fact that the signification excitation of the vocal tract system takes place at the instant of glottal closure in voiced speech. Our method used delay information form each sensor, and we need reverberant signals from 3 sensors. We obtain a new LP residual signal using modified IP residual combination which derived form weighting of the LP residual and the Hilbert transform of LP residual. The nature of the coherently added Hilbert envelop has several large amplitude spikes because of the effects of noise and reverberation. This residual of the clean speech is used to excite the time-varying all-pole filter to obtain the enhanced speech. We achieved simulation of proposed algorithm for performance analysis in reverberation environment. The proposed algorithm improves substantially the quality of reverberant speech.

Balance Algorithm for Long-term Bond First of Cash Flow Matching Problem (자금흐름 일치 문제의 장기채권 우선 잔고 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.167-173
    • /
    • 2023
  • The cash flow matching problem(CFMP) aims to minimize the initial investment by paying the total amount due for the T-year in principal and interest of bonds or bank deposits without paying the full amount in cash. Linear programming(LP) is the only known way to solve CFMP. The linear programming method is a problem that optimizes T linear functions, and it cannot be solved by handwriting, so LINGO, which is a solution to the linear programming method, is used. This paper proposes an algorithm that obtains the solution of CFMP solely by handwriting without the help of LINGO. The proposed algorithm determines the amount of bond purchases by covering payments until the previous year of the next maturity bond in the order that the maturity date falls from the longest to the short term. In addition, until the year before the maturity of the shortest maturity bond, the amount of deposit covered by the principal and interest of the bank deposit was determined. As a result of applying the proposed algorithm to two experimental data, it was shown that more accurate results can be obtained compared to the linear programming method.

Performance Improvement on MFCM for Nonlinear Blind Channel Equalization Using Gaussian Weights (가우시안 가중치를 이용한 비선형 블라인드 채널등화를 위한 MFCM의 성능개선)

  • Han, Soo-Whan;Park, Sung-Dae;Woo, Young-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.407-412
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적함수(fitness function)와 가우시안 가중치가 적용된 멤버쉽 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing (SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

Derivation of Probable Rainfall Intensity Formula Using Genetic Algorithm (유전자 알고리즘을 이용한 확률강우강도식의 산정)

  • La, Chang-Jin;Kim, Joong-Hoon;Lee, Eun-Tai;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.103-115
    • /
    • 2001
  • The current procedure to design hydraulic structures in a small basin area is to estimate the probable rainfall depth using rainfall intensity formula. The estimation of probable rainfall depth has many uncertainties inherent with it. However, it has been inevitable to simplify the nonlinearity if the rainfall in practice. This study attend to address a method which can model the nonlinearity in order to derive better rainfall intensity formula for the estimation of probable rainfall depth. The results show that genetic algorithm is more reliable and accurate than trial-and-error method or nonlinear programming technique(Powell's method) in the derivation of the rainfall intensity formula.

  • PDF

A Study on Statistical Approach for Nonlinear Image Denoising Algorithms (비선형 영상 잡음제거 알고리즘의 통계적 접근 방법에 관한 연구)

  • Hahn, Hee-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.151-156
    • /
    • 2012
  • In this paper robust nonlinear image denoising algorithms are introduced for the distribution which is Gaussian in the center and Laplacian in the tails. The distribution is known as the least favorable ${\epsilon}$-contaminated normal distribution that maximizes the asymptotic variance. The proposed filter proves to be the maximum likelihood estimator under the heavy-tailed Gaussian noise environments. It is optimal in the respect of maximizing the efficacy under the above noise environment. Another filter for reducing impulsive noise is proposed by mixing with the myriad filter to propose an amplitude-limited myriad filter. Extensive experiment is conducted with images corrupted with ${\alpha}$-stable noise to analyze the behavior and performance of the proposed filters.

Algorithm for Profit per Cost Ratio of Product Portfolio Problem (제품 포트폴리오 문제의 원가 이익률 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.139-143
    • /
    • 2023
  • The product portfolio problem(PPP) is an optimization problem that determines the production quantity of a particular product to obtain the maximum profit among the n products. Linear programming(LP) is known as the only way to solve this optimization problem. The linear programming method is a problem that optimizes n linear functions and uses LINGO or Excel solver. This paper proposes a simple algorithm that uses CPR, a product cost-profit ratio, to sort in CPR descending order and then determines the maximum allowed production quantity by hand as the actual production quantity. As a result of applying the proposed algorithm to six experimental data, it was shown that more accurate results can be obtained compared to the linear programming method.

On Learning and Structure of Cerebellum Model Linear Associator Network(II) -Learing Simulation & Engineering Application- (소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(II) -학습 시뮬레이션 및 응용-)

  • Hwang, H.;Baek, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 1990
  • 연구 I에서 수행한 소뇌모델 선형조합 신경망(CMLAN)의 분석 결과와 제안된 능률적 학습 알고리즘들에 의거하여 이차원 비선형 함수치의 출력 모의시험과 팔의 형태에 따라 두개의 목적치를 갖는 2 자유도 머니퓨레이터의 동작지령 산출 모의시험을 행하였다. 특히 2 자유도 머니퓨레이터의 경우, 작업공간에 적절한 입력네트의 변수를 선정하고 하나의 입력공간을 공유하는 두개의 세부 소뇌모델 선형조합 신경망을 서로 연결하는 구조로써 팔의 형태와 목적 지점에 따라 네트를 선정하는 구조를 갖도록 하였다. 제안한 학습 알고리즘의 성능 및 CMLAN의 학습에 따른 효과를 학습이득에 따라 컴퓨터로 모의시험하였으며 그 결과를 분석하였다. 잘 알려진 신경망인 BACK-PROPAGATION 다층(Multi-Layer) 신경망과 함수연결 신경망(Functional Link Net)을 이용한 모의시험 결과를 비교 분석하였다. CMLAN의 학습 능률성은 학습에 소요되는 컴퓨터의 cpu시간과 학습 중의시스템의 최대 편차와 RMS 편차의 변이도 및 최종 시스템 수렴치로서 나타내었다.

  • PDF

A Study on the Implementation of Linearly Shift Knapsack Public Key Cryptosystem (선형 이동 Knapsack 공개키 암호화 시스템의 구현에 관한 연구)

  • 차균현;백경갑;백인천;박상봉
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.9
    • /
    • pp.883-892
    • /
    • 1991
  • In this thesis explanation of new knapsack algorithm for public key system difficulty test and parallel architecture for implementation are suggested. Past Merkle-Hellman’s knapsack is weak in Shamir or Brickell`s attack by the effects of mapping into other easy sequenoes. But linearly shift knapsack system compensates them.

  • PDF

불규칙한 관측주기를 갖는 지하수자료를 이용한 지하수위 변동의 시계열 분석

  • 이명재;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.64-68
    • /
    • 2000
  • 장기간 관측된 지하수위 자료를 시계열분석 중의 하나인 전이함수 모형(Transfer Function - Noise model)을 이용하여 분석하였다. 일반적으로 전이함수 모형은 입력 변수와 출력변수와의 관계가 선형적일 때 적용이 가능하며, 자료가 시간에 대해 연속적으로 존재해야 하는 제한이 있다. 강수량과 지하수위의 변동은 비선형적인 관계를 가지고 있어 이러한 전이함수 모형을 직접 적용하는데는 어려움이 있다. 이러한 비선형성의 정도를 감소시키기 위해 물리모형(HYDRUS)을 이용하여 침투량을 계산하고 이를 입력변수로 사용하여 전이함수 모형을 적용하였다. 침투량을 입력변수로 모형을 추정하였을 때, 강수량을 직접 입력자료로 사용했을 경우보다 ME(mean error), RMSE(root-mean-squre error), MAE(mean absolute error)에서 상대적으로 작은 값을 보여주고 있다. TFN 모형의 모수를 추정하기 위해서 Kalman 필터 알고리즘과 최우추정법(Maximum Likelihood Estimation)을 이용하였다. Kalman 필터 알고리즘을 이용하여 불규칙한 관측주기를 갖는 시계열이나 결측값이 있는 시계열에 대해서도 전이함수 모형을 구하였으며, 이를 통해 결측값에 대한 추정이 가능하였다.

  • PDF